Memory load of left-corner MG parsers

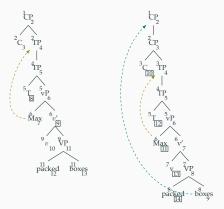
Lei Liu June 1, 2023

Cyclop Retreat SS23

• When building tree structures for sentences, how long nodes are held in memory (tenure) is a reliable metric for processing difficulties.

- When building tree structures for sentences, how long nodes are held in memory (tenure) is a reliable metric for processing difficulties.
- Reported tenure-related difficulty metrics are based on top-down parsing schemata, which are argued to be less a precise capture of how human parse sentences than, say, a left-corner parsing scheme.

- When building tree structures for sentences, how long nodes are held in memory (tenure) is a reliable metric for processing difficulties.
- Reported tenure-related difficulty metrics are based on top-down parsing schemata, which are argued to be less a precise capture of how human parse sentences than, say, a left-corner parsing scheme.
- This presentation asks how tenure works based on left-corner parsers for Minimalist Grammars


- When building tree structures for sentences, how long nodes are held in memory (tenure) is a reliable metric for processing difficulties.
- Reported tenure-related difficulty metrics are based on top-down parsing schemata, which are argued to be less a precise capture of how human parse sentences than, say, a left-corner parsing scheme.
- This presentation asks how tenure works based on left-corner parsers for Minimalist Grammars
- (...and provides no concrete answers.)

Outline

- 1. Introduction
 - Tenure
 - Parser directions
- 2. Tenure and the usual suspects
 - Right- vs. center embedding
 - Heavy NP shift
- 3. Questions and next steps

- Tenure: how long a parse item is held in memory
- (1) a. The **reporter** who ¹*the senator* ²*attacked* **disliked** the editor.
 - b. The **reporter** who ¹*the senator* who ²*John* ³*met* ⁴*attacked* **disliked** the editor. (Gibson 2000)

- Tenure: how long a parse item is held in memory
- (2) a. Max packed boxes.
 - b. Boxes, Max packed.

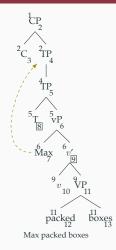
(Liu 2022)

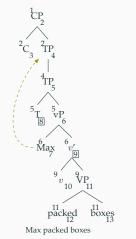
- Tenure correctly predict processing preferences cross-linguistically!
 - Across constructions

- Tenure correctly predict processing preferences cross-linguistically!
 - Across constructions
 - right- vs. center-embedding (Kobele et al. 2013)

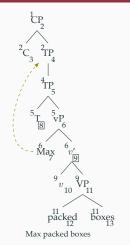
- Tenure correctly predict processing preferences cross-linguistically!
 - Across constructions
 - right- vs. center-embedding (Kobele et al. 2013)
 - crossing vs. nested dependencies (Kobele et al. 2013)

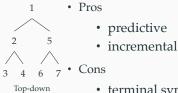
- Tenure correctly predict processing preferences cross-linguistically!
 - Across constructions
 - right- vs. center-embedding (Kobele et al. 2013)
 - crossing vs. nested dependencies (Kobele et al. 2013)
 - subject vs. object relative clauses (Graf et al. 2017, Zhang 2017, De Santo 2020)

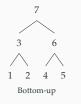

- Tenure correctly predict processing preferences cross-linguistically!
 - Across constructions
 - right- vs. center-embedding (Kobele et al. 2013)
 - crossing vs. nested dependencies (Kobele et al. 2013)
 - subject vs. object relative clauses (Graf et al. 2017, Zhang 2017, De Santo 2020)
 - attachment ambiguity (Lee 2018)


- Tenure correctly predict processing preferences cross-linguistically!
 - Across constructions
 - right- vs. center-embedding (Kobele et al. 2013)
 - crossing vs. nested dependencies (Kobele et al. 2013)
 - subject vs. object relative clauses (Graf et al. 2017, Zhang 2017, De Santo 2020)
 - attachment ambiguity (Lee 2018)
 - heavy NP shift (Liu 2018)

- Tenure correctly predict processing preferences cross-linguistically!
 - Across constructions
 - right- vs. center-embedding (Kobele et al. 2013)
 - crossing vs. nested dependencies (Kobele et al. 2013)
 - subject vs. object relative clauses (Graf et al. 2017, Zhang 2017, De Santo 2020)
 - attachment ambiguity (Lee 2018)
 - heavy NP shift (Liu 2018)
 - Across languages

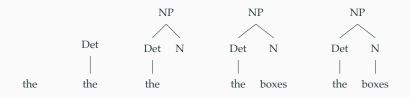

- Tenure correctly predict processing preferences cross-linguistically!
 - Across constructions
 - right- vs. center-embedding (Kobele et al. 2013)
 - crossing vs. nested dependencies (Kobele et al. 2013)
 - subject vs. object relative clauses (Graf et al. 2017, Zhang 2017, De Santo 2020)
 - attachment ambiguity (Lee 2018)
 - heavy NP shift (Liu 2018)
 - Across languages
 - English, German, Italian, Korean, Japanese, Chinese, Persian...


- Tenure correctly predict processing preferences cross-linguistically!
 - Across constructions
 - right- vs. center-embedding (Kobele et al. 2013)
 - crossing vs. nested dependencies (Kobele et al. 2013)
 - subject vs. object relative clauses (Graf et al. 2017, Zhang 2017, De Santo 2020)
 - attachment ambiguity (Lee 2018)
 - heavy NP shift (Liu 2018)
 - Across languages
 - English, German, Italian, Korean, Japanese, Chinese, Persian...
 - All based on a version of top-down parsers

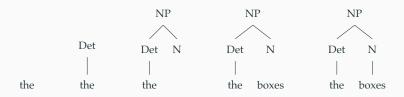


• terminal symbols do not guide prediction

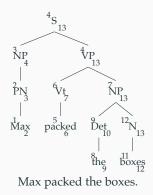
- Pros
 - input driven
 - (can be) incremental
- Cons
 - not predicative



- Integrates
 - top-down prediction
 - bottom-up reduction

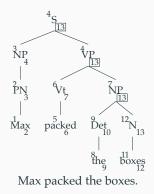

1. S -> NP VP	5. PN -> Max
2. NP -> PN	6. Vt -> packed
3. NP -> Det N	7. Det -> the
4. VP -> Vt NP	8. N -> boxes

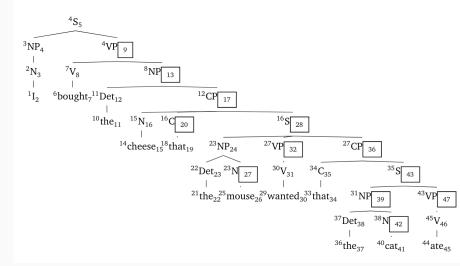
1.	S -> NP VP	5.	PN -> Max
2.	NP -> PN	6.	Vt -> packed
3.	NP -> Det N	7.	Det -> the
4.	VP -> Vt NP	8.	N -> boxes


1.	S -> NP VP	5.	PN -> Max
2.	NP -> PN	6.	Vt -> packed
3.	NP -> Det N	7.	Det -> the
4.	VP -> Vt NP	8.	N -> boxes

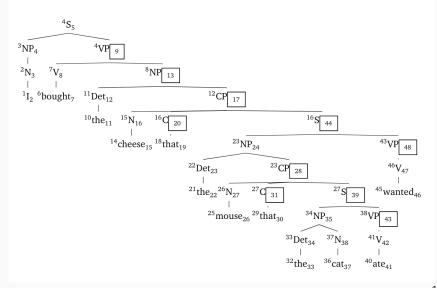
• Left-corner: the leftmost symbol on the righthand side of the rewrite arrow.

- 1. S -> NP VP
- 2. NP -> PN
- 3. NP -> Det N
- 4. VP -> Vt NP


- 5. PN -> Max
 - 6. Vt -> packed
 - 7. Det -> the
 - 8. N \rightarrow boxes



11


- 1. S -> NP VP
- 2. NP -> PN
- 3. NP -> Det N
- 4. VP -> Vt NP

- 5. PN -> Max
 - 6. Vt -> packed
 - 7. Det -> the
 - 8. N \rightarrow boxes

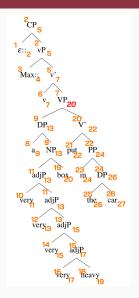
I bought the cheese that the mouse wanted that the cat ate.

I bought the cheese that the mouse that the cat ate wanted.

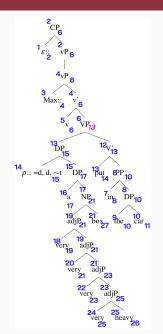
- (3) I bought the cheese that the mouse wanted that the cat ate. right-embedding MaxT = 12
- (4) I bought the cheese that the mouse that the cat ate wanted. center-embedding

MaxT = 28

- (3) I bought the cheese that the mouse wanted that the cat ate. right-embedding MaxT = 12
- (4) I bought the cheese that the mouse that the cat ate wanted. center-embedding


MaxT = 28

success


- (3) I bought the cheese that the mouse wanted that the cat ate. right-embedding MaxT = 12
- (4) I bought the cheese that the mouse that the cat ate wanted. center-embedding

MaxT = 28

success-ish

• ϵ Max v a very very very very heavy box put in the car.

• ϵ Max v in the car put ρ a very very very very very heavy box.

- (5)
 ϵ Max v a very very very very heavy box put in the car.
 canonical order
 MaxT = 13
- (6) ϵ Max v in the car put ρ a very very very very heavy box. HNPS order

MaxT = 7

- (5)
 ϵ Max v a very very very very heavy box put in the car.
 canonical order
 MaxT = 13
- (6) ϵ Max v in the car put ρ a very very very very heavy box. HNPS order

MaxT = 7

success

- (5)
 ϵ Max v a very very very very heavy box put in the car.
 canonical order
 MaxT = 13
- (6) ϵ Max v in the car put ρ a very very very very heavy box. HNPS order

MaxT = 7

success-ish

Questions and next steps

- Nodes vs. trees
 - memorizing a tree harder than memorizing a node?
 - metrics other than MaxT
 - SumT
 - BoxT
 - what about movement?
- Other benchmark constructions
 - relative clauses
 - topicalization (See 2)
- Tree annotation tools


Thank you!

- De Santo, A. (2020). Structure and memory: A computational model of storage, gradience, and priming. PhD thesis, State University of New York at Stony Brook.
- Gibson, E. (2000). The dependency locality theory: A distance-based theory of linguistic complexity. *Image, language, brain,* 2000:95–126.
- Graf, T., Monette, J., and Zhang, C. (2017). Relative clauses as a benchmark for minimalist parsing. Journal of Language Modelling, 5(1):57–106.
- Kobele, G. M., Gerth, S., and Hale, J. (2013). Memory resource allocation in top-down minimalist parsing. In Formal Grammar, pages 32–51. Springer.
- Lee, S. Y. (2018). A minimalist parsing account of attachment ambiguity in english and korean. *Journal of Cognitive Science*, 19(3):291–329.
- Liu, L. (2018). Minimalist parsing of heavy np shift. In Proceedings of the 32nd Pacific Asia Conference on Language, Information and Computation.
- Liu, L. (2022). Phrasal Weight Effect on Word Order. PhD thesis, State University of New York at Stony Brook.
- Zhang, C. (2017). Stacked Relatives: Their Structure, Processing and Computation. PhD thesis, State University of New York at Stony Brook.

Merely Local Syntactic Coherence Effects

- (7) The coach smiled at the player **tossed** a frisbee.
- (8) The coach smiled at the player **thrown** a frisbee.

Bottom-up and coordination

