Phrasal Weight Effect on Word Order

light-before-heavy vs. heavy-before-light

Lei Liu December 9, 2022

• A great number of languages prefer light-before-heavy word order.

- A great number of languages prefer light-before-heavy word order.
- This preference follows from memory resources needed for parsing competing syntactic structure.

- A great number of languages prefer light-before-heavy word order.
- This preference follows from memory resources needed for parsing competing syntactic structure.
 - as shown by Minimalist Grammar parsers

- A great number of languages prefer light-before-heavy word order.
- This preference follows from memory resources needed for parsing competing syntactic structure.
 - as shown by Minimalist Grammar parsers
- What about heavy-before-light?

- 1. Introduction: light-before-heavy preference
- 2. Heavy how?
 - Weight measured in length
 - Weight measured in distance
 - Weight measured in memory cost
- 3. What about heavy before light?

Light-before-heavy: English Particle verb

• English particle verb construction (PV)

Light-before-heavy: English Particle verb

- English particle verb construction (PV)
- a. Chris put on [DP a hat which Alex made with merino wool].
 b. Chris put [DP a hat which Alex made with merino wool] on.

• English heavy NP shift

- English heavy NP shift
- (2) a. Max put [DP boxes] [PP in his car].

- English heavy NP shift
- (2) a. Max put $[_{DP} \text{ boxes}] [_{PP} \text{ in his car}].$
 - b. ??Max put [PP in his car] [DP boxes].

- English heavy NP shift
- (2) a. Max put $[_{DP} \text{ boxes}] [_{PP} \text{ in his car}].$
 - b. ??Max put [PP in his car] [DP boxes].
 - c. HNPS Max put [PP in his car] [DP all the boxes of home furnishings].

- English heavy NP shift
- (2) a. Max put $[_{DP} \text{ boxes}] [_{PP} \text{ in his car}].$
 - b. ??Max put [PP in his car] [DP boxes].
 - c. HNPS Max put [PP in his car] [DP all the boxes of home furnishings].
 - d. ?Max put [DP all the boxes of home furnishings] [PP in his car].

• Non-decreasing weight (Wasow 1997)

FIGURE 5. Mean weights in HNPS (in phrasal nodes).

FIGURE 6. Mean weights in DA (in phrasal nodes).

Light-before-heavy: Mandarin ba

- (3) a. Zhangsan ba [DP daocha] fang (le) [PP zai yong tanmu zhizuo Z. ba knife.fork put (LE) on use sandalwood make de zhuozi-shang]
 DE table-top
 - b. Zhangsan [PP zai yong tanmu zhizuo de zhuozi-shang] fang Z. on use sandalwood make DE table-top put
 - (le) [DP daocha]
 - (LE) knife.fork

'Z put a set of knife and fork on the table that is made of sandalwood.'

(4) Zhangsan ba [DP daocha] [vP fang (le) [PP zai zhuozi-shang]]
 Z. ba knife.fork put (LE) on table-top
 'Z put of knife and fork on the table.'

	DP	vP	
Mean number of characters	4.73	6.82	p < 0.001
Mean number of phrases	3.1	4.8	p < 0.001
Mean subtree height	4.3	5.3	p < 0.001

 Table 1: Mean weight values of ba sentences extracted from Chinese Treebank 8.0 (Liu 2022)

Weight measured in length

- A phrase is heavy when...
 - Production: 5-word or 10-word DP, more HNPS order (Stallings et al. 1998)
 - Reading time: 9-word DP, longer reading time in PV separated order (e.g., look...up) (Gonnerman and Hayes 2005)
 - Corpus frequency: 11+ Characters, more likely occurs in a *ba* construction (Liu 2007)
- But...
 - (5) a. Max put $[_{DP}$ a box which Chris carefully packed] in the car.
 - b. Max put $[_{DP}$ a very very very heavy box] in the car.

Weight measured in recognition distance

(6) HNPS and constituent recognition distance

adapted from (Hawkins 1994, 57)

- a. I [VP gave [[DP the old book that was very difficult to find] [[PP to Mary]]. 1 2 3 4 5 6 7 8 9 10 11
- b. I [VP gave [[PP to Mary] [[DP the old book that was very difficult to find]]. 1 2 3 4

Weight measured in recognition distance

(6) HNPS and constituent recognition distance

adapted from (Hawkins 1994, 57)

- a. I [VP gave [[DP the old book that was very difficult to find] [[PP to Mary]]. 1 2 3 4 5 6 7 8 9 10 11
- b. I [VP gave [[PP to Mary] [[DP the old book that was very difficult to find]]. 1 2 3 4
- c. I [VP gave [[PP to Mary] [[DP the very ... very very very very old book]]. 1 2 3 4

Weight measured in recognition distance

(6) HNPS and constituent recognition distance

adapted from (Hawkins 1994, 57)

- a. I [VP gave [[DP the old book that was very difficult to find] [[PP to Mary]]. 1 2 3 4 5 6 7 8 9 10 11
- b. I [VP gave [[PP to Mary] [[DP the old book that was very difficult to find]]. 1 2 3 4
- c. I [VP gave [[PP to Mary] [[DP the very ... very very very very old book]]. 1 2 3 4
- d. I [VP gave [[PP to Mary] [[DP the old book]]. 1 2 3 4

Weight measured in memory cost - HNPS

(7) put [_{DP} ...boxes...] [_{PP} in...] canonical order

(8) put [PP in...] [DP ...boxes...] HNPS order

Step 1	CP is conjectured
Step 2	CP expands to C and TP
Step 3	C is found
Step 4	TP expands to TP
Step 5	TP expands to T and vP
Step 6	${ m vP}$ expands to ${ m Max}$ and ${ m v'}$
Step 7	Max is found
Step 8	T is found
Step 9	\mathbf{v}' expands to \mathbf{v} and \mathbf{VP}
Step 10	v is found
Step 11	VP expands to packed and boxes
Step 12	packed is found
Step 13	boxes is found

 Step 1
 CP is conjectured

 Step 2
 CP expands to C and TP

 Step 3
 C is found

 Step 4
 TP expands to TP

 Step 5
 TP expands to T and vP

 Step 6
 vP expands to Max and v'

 Step 7
 Max is found

 Step 8
 T is found

 Step 9
 v' expands to v and VP

 Step 10
 v is found

 Step 11
 VP expands to packed and boxes

 Step 12
 packed is found

 Step 13
 boxes is found

Step 1	CP is conjectured
Step 2	CP expands to C and TP
Step 3	C is found
Step 4	TP expands to TP
Step 5	TP expands to T and vP
Step 6	${ m vP}$ expands to ${ m Max}$ and ${ m v'}$
Step 7	Max is found
Step 8	T is found
Step 9	\mathbf{v}' expands to \mathbf{v} and \mathbf{VP}
Step 10	v is found
Step 11	VP expands to packed and boxes
Step 12	packed is found
Step 13	boxes is found

 Step 1
 CP is conjectured

 Step 2
 CP expands to C and TP

 Step 3
 C is found

 Step 4
 TP expands to TP

 Step 5
 TP expands to T and vP

 Step 6
 vP expands to Max and v'

 Step 7
 Max is found

 Step 8
 T is found

 Step 9
 v' expands to v and VP

 Step 10
 v is found

 Step 11
 VP expands to packed and boxes

 Step 12
 packed is found

 Step 13
 boxes is found

 Step 1
 CP is conjectured

 Step 2
 CP expands to C and TP

 Step 3
 C is found

 Step 4
 TP expands to TP

 Step 5
 TP expands to T and vP

 Step 6
 vP expands to Max and v'

 Step 7
 Max is found

 Step 8
 T is found

 Step 9
 v' expands to v and VP

 Step 10
 v is found

 Step 11
 VP expands to packed and boxes

 Step 12
 packed is found

 Step 13
 boxes is found

 Step 1
 CP is conjectured

 Step 2
 CP expands to C and TP

 Step 3
 C is found

 Step 4
 TP expands to TP

 Step 5
 TP expands to T and vP

 Step 6
 vP expands to Max and v'

 Step 7
 Max is found

 Step 8
 T is found

 Step 10
 v is found

 Step 11
 VP expands to v and VP

 Step 12
 packed is found

 Step 13
 boxes is found

 Step 1
 CP is conjectured

 Step 2
 CP expands to C and TP

 Step 3
 C is found

 Step 4
 TP expands to TP

 Step 5
 TP expands to T and vP

 Step 6
 vP expands to Max and v'

 Step 7
 Max is found

 Step 8
 T is found

 Step 10
 v is found

 Step 11
 VP expands to v and VP

 Step 12
 packed is found

 Step 13
 boxes is found

Step 1 CP is conjectured Step 2 CP expands to C and TP Step 3 C is found TP expands to TP Step 4 Step 5 TP expands to T and vP vP expands to Max and v'Max is found T is found v' expands to v and VP Step 10 v is found VP expands to packed and boxes packed is found boxes is found

Step 1 CP is conjectured Step 2 CP expands to C and TP Step 3 C is found TP expands to TP Step 4 Step 5 TP expands to T and vP vP expands to Max and v'Max is found T is found v' expands to v and VP Step 10 v is found VP expands to packed and boxes packed is found boxes is found

Step 1 CP is conjectured Step 2 CP expands to C and TP Step 3 C is found TP expands to TP Step 4 Step 5 TP expands to T and vP Step 6 vP expands to Max and v'Max is found T is found v' expands to v and VP Step 10 v is found VP expands to packed and boxes packed is found boxes is found

Step 1 CP is conjectured Step 2 CP expands to C and TP Step 3 C is found TP expands to TP Step 4 Step 5 TP expands to T and vP Step 6 vP expands to Max and v'Max is found T is found v' expands to v and VP Step 10 v is found VP expands to packed and boxes packed is found boxes is found

(9) C Max • T v packed boxes.

Step 1 CP is conjectured Step 2 CP expands to C and TP Step 3 C is found TP expands to TP Step 4 Step 5 TP expands to T and vP Step 6 vP expands to Max and v'Max is found Step 7 T is found v' expands to v and VP Step 10 v is found VP expands to packed and boxes packed is found boxes is found

look for C look for Max look for T look for v look for v look for v look for packed look for packed look for boxes done

Step 1 CP is conjectured Step 2 CP expands to C and TP Step 3 C is found TP expands to TP Step 4 Step 5 TP expands to T and vP Step 6 vP expands to Max and v'Max is found Step 7 T is found Step 8 v' expands to v and VP v is found VP expands to packed and boxes packed is found boxes is found

look for C look for Max look for T look for v look for v look for packed look for packed look for boxes done

Step 1 CP is conjectured Step 2 CP expands to C and TP Step 3 C is found TP expands to TP Step 4 Step 5 TP expands to T and vP Step 6 vP expands to Max and v'Max is found Step 7 T is found Step 8 v' expands to v and VP Step 10 v is found VP expands to packed and boxes packed is found boxes is found

look for C look for Max look for T look for v look for v look for v look for packed look for packed

Step 1 CP is conjectured Step 2 CP expands to C and TP Step 3 C is found TP expands to TP Step 4 Step 5 TP expands to T and vP Step 6 vP expands to Max and v'Max is found Step 7 T is found Step 8 Step 9 v' expands to v and VP v is found VP expands to packed and boxes packed is found boxes is found

look for C look for C look for Max look for Max look for Max look for Max look for T look for v look for v look for packed look for packed look for boxes done

Step 1 CP is conjectured Step 2 CP expands to C and TP Step 3 C is found TP expands to TP Step 4 Step 5 TP expands to T and vP Step 6 vP expands to Max and v'Max is found Step 7 T is found Step 8 Step 9 v' expands to v and VP v is found VP expands to packed and boxes packed is found boxes is found

look for C look for C look for Max look for Max look for Max look for Max look for T look for v look for v look for packed look for packed look for boxes done

Step 1 CP is conjectured Step 2 CP expands to C and TP Step 3 C is found TP expands to TP Step 4 Step 5 TP expands to T and vP Step 6 vP expands to Max and v'Max is found Step 7 T is found Step 8 Step 9 v' expands to v and VP Step 10 v is found VP expands to packed and boxes packed is found boxes is found

look for C look for Max look for Y look for v look for v look for packed look for boxes done

Step 1 CP is conjectured Step 2 CP expands to C and TP Step 3 C is found TP expands to TP Step 4 Step 5 TP expands to T and vP Step 6 vP expands to Max and v'Max is found Step 7 T is found Step 8 Step 9 v' expands to v and VP Step 10 v is found VP expands to packed and boxes packed is found boxes is found

look for C look for Max look for Y look for v look for v look for packed look for boxes done

Step 1 CP is conjectured Step 2 CP expands to C and TP Step 3 C is found TP expands to TP Step 4 Step 5 TP expands to T and vP Step 6 vP expands to Max and v'Max is found Step 7 T is found Step 8 Step 9 v' expands to v and VP Step 10 v is found VP expands to packed and boxes Step 11 packed is found boxes is found

look for C look for Max look for V look for v look for v look for packed look for packed look for boxes done

Step 1 CP is conjectured Step 2 CP expands to C and TP Step 3 C is found TP expands to TP Step 4 Step 5 TP expands to T and vP Step 6 vP expands to Max and v'Max is found Step 7 T is found Step 8 Step 9 v' expands to v and VP Step 10 v is found VP expands to packed and boxes Step 11 packed is found boxes is found

look for C look for Max look for V look for v look for v look for packed look for packed look for boxes done

(9) C Max T v packed • boxes.

Step 1 CP is conjectured Step 2 CP expands to C and TP Step 3 C is found TP expands to TP Step 4 Step 5 TP expands to T and vP Step 6 vP expands to Max and v'Max is found Step 7 T is found Step 8 Step 9 v' expands to v and VP Step 10 v is found Step 11 VP expands to packed and boxes Step 12 packed is found boxes is found

look for C look for Max look for Y look for v look for v look for packed look for boxes dope

(9) C Max T v packed boxes. \ltimes

Step 1 CP is conjectured Step 2 CP expands to C and TP Step 3 C is found TP expands to TP Step 4 Step 5 TP expands to T and vP Step 6 vP expands to Max and v'Max is found Step 7 T is found Step 8 Step 9 v' expands to v and VP Step 10 v is found Step 11 VP expands to packed and boxes Step 12 packed is found Step 13 boxes is found

look for C look for C look for Max look for Max look for Max look for Max look for T look for v look for v look for v look for packed look for packed look for boxes done

(10) Boxes, \bullet C Max T v packed.

(10) Boxes, $\mathbf{C} \bullet \mathbf{Max} \mathbf{T} \mathbf{v}$ packed.

(10) Boxes, C Max \bullet T v packed.

(10) Boxes, C Max $T \bullet v$ packed.

(10) Boxes, C Max T $\mathbf{v} \bullet$ packed.

(10) Boxes, C Max T v packed. \ltimes

• MaxT = max(tenure-of(n)|n \in T) 3 vs. 7

(16) put [DP ...boxes...] [PP in...] canonical order

(17) put [PP in...] [DP ...boxes...] HNPS order

MaxT: 12/v' (canonical)

(16) put [DP ...boxes...] [PP in...] canonical order

(17) put [PP in...] [DP ...boxes...] HNPS order

MaxT: 12/v' (canonical) > 8/DP (HNPS)

(16) put [DP ...boxes...] [PP in...] canonical order

(17) put [PP in...] [DP ...boxes...] HNPS order

MaxT: 12/v' (canonical) > 8/DP (HNPS) \checkmark

(16) put [DP ...boxes...] [PP in...] canonical order

(17) put [PP in...] [DP ...boxes...] HNPS order

MaxT: 12/v' (canonical) > 8/DP (HNPS) \checkmark **SumT**: 18 (canonical)

(16) put [DP ...boxes...] [PP in...] canonical order

(17) put [PP in...] [DP ...boxes...] HNPS order

MaxT: 12/v' (canonical) > 8/DP (HNPS) \checkmark **SumT**: 18 (canonical) > 15 (HNPS)

(16) put [DP ...boxes...] [PP in...] canonical order

(17) put [PP in...] [DP ...boxes...] HNPS order

MaxT: 12/v' (canonical) > 8/DP (HNPS) \checkmark **SumT**: 18 (canonical) > 15 (HNPS) \checkmark

(16) put [DP ...boxes...] [PP in...] canonical order

(17) put [PP in...] [DP ...boxes...] HNPS order

MaxT: 12/v' (canonical) > 8/DP (HNPS) \checkmark SumT: 18 (canonical) > 15 (HNPS) \checkmark HNPS advantage!

Weight measured in memory cost

- Structural simplicity accounts for word order preferences in:
 - English heavy NP shift (HNPS)
 - (18) Max put [PP] in his car [DP] all the boxes of home furnishings].
 - (19) Max put $[_{DP}$ all the boxes of home furnishings] $[_{PP}$ in his car].
 - English particle verb construction (PV)
 - (20) Chris put on [DP] a hat which Alex made with merino wool].
 - (21) Chris put $[_{DP}$ a hat which Alex made with merino wool] on.
 - Mandarin ba construction
 - (22) Zhangsan ba [DP daocha] fang (le) [PP zai yong tanmu zhizuo Z. ba knife.fork put (LE) on use sandalwood make de zhuozi-shang] DE table-top
 - (23) Zhangsan [PP zai yong tanmu zhizuo de zhuozi-shang] fang (le)
 Z. on use sandalwood make DE table-top put (LE)
 [DP daocha] knife fork

'Z put a set of knife and fork on the table that is made of sandalwood.'

15

Why light-before-heavy after all?

• Focus Last: reserving the more important information at the end (amo Krifka 1998)

Why light-before-heavy after all?

- Focus Last: reserving the more important information at the end (amo Krifka 1998)
- Incremental production processes: longer, harder-to-process phrases are delayed during utterance planning (Stallings et al. 1998, Stallings and MacDonald 2011)

Why light-before-heavy after all?

- Focus Last: reserving the more important information at the end (amo Krifka 1998)
- Incremental production processes: longer, harder-to-process phrases are delayed during utterance planning (Stallings et al. 1998, Stallings and MacDonald 2011)
- Memory efficiency: a short-before-long structure is more memory efficient to parse. (Liu 2022)

Heavy before light - Japanese

- (24) Japanese OSV and SOV order (adapted from Yamashita and Chang (2001))
 - a. [obj.Se-ga takakute gassiri sita hanni-o]i [subj.Keezi-ga] ti height-nom tall-and big-boned suspect-acc detective-nom Oikaketa. chased
 'The detective chased the suspect who is tall and big-boned.' Shift

order, preferred

- b. [subj.Keezi-ga] [obj.Se-ga takakute gassiri sita hanni-o] Oikaketa. detective-nom height-nom tall-and big-boned suspect-acc chased 'The detective chased the suspect who is tall and big-boned.'
- c. C.f., [subj.Keezi-ga] [obj.hanni-o] Oikaketa. detective-nom suspect-acc chased 'The detective chased the suspect.'

Heavy before light - Japanese

Morphology invading syntax

(26) From Sören's retreat presentation

ke-tidak adil-an NMLZ-NEG just-NMLZ

'injustice'

Morphology invading syntax

(26) From Sören's retreat presentation

ke-tidak adil-an NMLZ-NEG just-NMLZ

'injustice'

Indonesia

• What about justice?

(28) Maqa -ku -ya -chi -n beat -refl -dur -caus -3sg 'He_i is causing [him_j to beat himself_j].'

Quechua

(29) From Greg's retreat presentation

- (28) Maqa -ku -ya -chi -n beat -refl -dur -caus -3sg
 'He_i is causing [him_j to beat himself_j].' Quechua
- (29) From Greg's retreat presentation What about beat as a simple transitive?

(28) Maqa -ku -ya -chi -n beat -refl -dur -caus -3sg 'He_i is causing [him_j to beat himself_j].'

Quechua

(29) From Greg's retreat presentation • What about beat as a simple transitive?

• Where does the weight go?

(28)Maqa -ku -ya -chi -n beat -refl -dur -caus -3sg 'He_i is causing [him_i to beat himself_i].'

(29)

From Greg's retreat presentation • What about beat as a simple transitive?

Where does the weight go?

we can test 'em!

R

(28)Maqa -ku -ya -chi -n beat -refl -dur -caus -3sg 'He_i is causing [him_i to beat himself_i].'

(29)

From Greg's retreat presentation • What about beat as a simple transitive?

Where does the weight go?

we can test 'em!

• More structure \rightleftharpoons more memory cost

(28)Maqa -ku -ya -chi -n beat -refl -dur -caus -3sg 'He_i is causing [him_i to beat himself_i].'

(29)

From Greg's retreat presentation • What about beat as a simple transitive?

Where does the weight go?

we can test 'em!

- More structure \rightleftharpoons more memory cost
- if yes -> happy syntax

(28)Maqa -ku -ya -chi -n beat -refl -dur -caus -3sg 'He_i is causing [him_i to beat himself_i].'

(29)

From Greg's retreat presentation • What about beat as a simple transitive?

· Where does the weight go?

we can test 'em!

- More structure \rightleftharpoons more memory cost
- if yes -> happy syntax
- if not -> look elsewhere

(28)Maqa -ku -ya -chi -n beat -refl -dur -caus -3sg 'He_i is causing [him_i to beat himself_i].'

(29)

From Greg's retreat presentation • What about beat as a simple transitive?

· Where does the weight go?

we can test 'em!

- More structure \rightleftharpoons more memory cost
- if yes -> happy syntax
- if not -> look elsewhere

(28)Maga-ku -ya -chi -n beat -refl -dur -caus -3sg 'He_i is causing [him_i to beat himself_i].'

(29)

Where does the weight go?

we can test 'em!

- More structure \rightleftharpoons more memory cost
- if yes -> happy syntax
- if not -> look elsewhere

Memory cost \leftarrow MG parsing \rightarrow Structure

R

R DP

- Gonnerman, L. M. and Hayes, C. R. (2005). The professor chewed the students... out: Effects of dependency, length, and adjacency on word order preferences in sentences with verb particle constructions. In *Proceedings of the Annual Meeting of the Cognitive Science Society*, volume 27.
- Hawkins, J. A. (1994). A performance theory of order and constituency, volume 73. Cambridge University Press.
- Krifka, M. (1998). Scope inversion under the rise-fall contour in german. Linguistic inquiry, 29(1):75-112.
- Liu, F.-h. (2007). Word order variation and ba sentences in chinese. Studies in Language. International Journal sponsored by the Foundation "Foundations of Language", 31(3):649–682.
- Liu, L. (2022). Phrasal Weight Effect on Word Order. PhD thesis, State University of New York at Stony Brook.
- Stallings, L. M. and MacDonald, M. C. (2011). It's not just the "heavy np": relative phrase length modulates the production of heavy-np shift. *Journal of psycholinguistic research*, 40(3):177–187.
- Stallings, L. M., MacDonald, M. C., and O'Seaghdha, P. G. (1998). Phrasal ordering constraints in sentence production: Phrase length and verb disposition in heavy-np shift. *Journal of Memory and Language*, 39(3):392–417.
- Wasow, T. (1997). Remarks on grammatical weight. Language variation and change, 9(1):81–105.
- Yamashita, H. and Chang, F. (2001). "long before short" preference in the production of a head-final language. Cognition, 81(2):B45–B55.

Metric		Metric	
AvgS	No	MaxT	Yes
AvgS'†	No	MaxT'	Yes
AvgT	Yes	MaxTR	Yes
AvgT'	Yes	MaxTR'	Yes
BoxT	Tie	Movers	No
BoxT'	No	Movers'	No
MaxS	No	SumS	No
MaxS'	No	SumS'	No
MaxSR ‡	No	SumT	Yes
MaxSR'	No	SumT'	No
MaxT	Yes	SumT'	No

† Primed (') metrics are metrics that do not ignore trivial (≤ 2) memory load. ≠metrics suffixed with "R" apply recursively until a difference is found.

Table 2: Complexity metrics predictions for HNPS - Rightward movement

