
Psycholinguistic adequacy of left-corner
parsing for Minimalist Grammars

Anonymous

ABSTRACT

Keywords:
parsing, sentence
processing,
Minimalist
Grammars,
relative clauses

This paper shows that a left-corner parser for Minimalist Grammars
(MGs) requires more memory resources to parse center-embedding
structures than both left- and right-embeddings. The behavior of the
parser mimics that of a human parser. To measure memory resources,
we propose a complexity metric that is derived from the familiar no-
tion of tenure and reliably captures the processing phenomena. The
results indicate the viability of left-corner parsing for MGs as a model
for human sentence processing.

1INTRODUCTION

The difficulty of human sentence processing is influenced by several
factors, including syntactic structure. For example, in English, a multi-
layered center-embedding construction (1a) is notoriously difficult to
process compared with left- and right-embedding constructions (1b
and 1c) with the same number of embedded layers.

(1) a. # The rat that the cat that the dog chased bit ate the
cheese.

b. John’ s brother’s cat despises rats.

Journal of Language Modelling Vol i2, No eiπ (1970), pp. 1–40

Anonymous

c. This is the dog that chased the cat that bit the rat that ate
the cheese.

(adapted from Resnik 1992)

Moreover, for center-embeddings, the number of embedded lay-
ers quickly reaches an upper limit, after which the sentence is no
longer comprehensible. While linguists can construct center-embedding
sentences with up to four embedded layers (e.g., John whom June
whom Paul whom Jean whom Dick hates adores prefers detests loves
Mary. Bar-Hillel 1966 cited in Karlsson 2007), naturally occurring
center-embeddings, for instance, ones that are found in corpora have
a maximum of three embedded layers (Karlsson 2007). Such a limit
is not found in left- or right-embeddings. (1b) and (1c) can be ex-
tended to (2a) and (2b), respectively, without a drastic decrease in
comprehensibility.

(2) a. John’s brother’s cat’s neighbor despises rats.
b. This is the dog that chased the cat that bit the rat that ate
the cheese that had eyes.

To account for this processing bias, Resnik (1992) proposes a link-
ing theory between the observed phenomena and the parser. He shows
that a left-corner (LC) parser for context-free grammars (CFGs) re-
quires more memory to process center-embeddings compared with
left- or right-embeddings. Specifically, to parse center-embeddings,
the parser requires a memory storage that is proportional to the height
of the syntactic tree, in contrast to only a constant size of memory
storage needed to parse left- and right-embeddings, irrespective of the
number of embedded layers.

Despite the elegance of the CFG-based modeling account, the for-
malism proves too restrictive for capturing the complexity of nat-
ural languages (Shieber 1985). To address this, subsequent studies
moved to more sophisticated formalisms such as minimalist grammars
(MGs, Stabler 1997). Kobele et al. (2013) show that the offline process-
ing difficulty contrast between center- and right-embeddings is deriv-
able from the memory resource needed by a top-down parser for MGs
to process the said structures: a center-embedding structure requires
more memory resources to parse than a right-embedding one.

[2]

Psycholinguistic adequacy of LC parsing for MGs

In Kobele et al. (2013), the memory cost is reliably measured us-
ing tenure, a complexity metric reflecting the amount of “time” a parse
item is retained in memory. Graf et al. (2017) further show that a com-
bination of tenure-based metrics derives processing bias found in sub-
ject and object relative clauses cross-linguistically. This enterprise of
modeling work has since grown in both empirical coverage and the
understanding of complexity metrics (e.g., verb-clusters Kobele et al.
2013; stacked relative clauses in Mandarin and English Zhang 2017;
attachment ambiguity in English and Korean Lee 2018; gradient diffi-
culty in Italian relative clauses De Santo 2019; end-weight preference
in English and Mandarin Liu 2022, among others).

Recall that center-embedding structures are harder to process
than both left- and right-embeddings. Complexity metrics in top-
down MG parsing only capture the contrast between center- vs. right-
embedding, but not center- vs. left-embedding (Kobele et al. 2013).
Furthermore, based on the left-corner parser for CFG, Resnik (1992)
argues that left-corner parsing is a more plausible model for the hu-
man sentence processing mechanism. A natural question is whether a
left-corner parser for MGs can derive the three-way processing distinc-
tion of the embedded sentences and thus serve as a model for human
sentence processing.

This paper aims to answer this question. We show that a left-
corner parser for MGs indeed requires morememory resources to parse
center-embeddings than both left- and right-embeddings. In doing so,
We propose a complexity metric that still features the notion of tenure
and makes desirable processing predictions. The results indicate that
left-corner parsing for MGs is a viable model for human sentence pro-
cessing.

The paper proceeds as follows. Section 2 introduces the grammar
formalism, MG, its LC parser, and the notion of tenure in LC MG pars-
ing. Section 3 presents modeling results for left-, center-, and right-
embedding structures. Section 4 discusses implementational choices
including syntactic assumptions, move-strategies, and other potential
complexity metrics. Section 5 concludes the paper.

[3]

Anonymous

2 LEFT-CORNER PARSING FOR
MINIMALIST GRAMMARS

The left-corner parser for MGs used in this study is based on Stanojević
and Stabler (2018) and Hunter et al. (2019). In this section, We first
introduce the grammar formalism, its parser, and a tree annotation
scheme to represent the parser’s behavior using derivation trees. Based
on tree annotations, We then discuss complexity metrics focusing on
tenure – the amount of time a parse item is stored in memory.

2.1 Minimalist Grammar and its left-corner parser

Minimalist Grammar (MG, Stabler 1997, 2011) is a lexicalized, context-
sensitive grammar formalism based on theMinimalist Program (Chom-
sky 2014). A lexical item in MGs is a feature bundle that expresses
information including its sound, category, and dependency relations.
Category and dependency features enter feature-checking relations via
operations merge and move, according to which lexical items combine
into sentences (trees).

Merge combines lexical items and/or derived categories. For ex-
ample, lexical items ate and cheeses can be merged to build a VP such
as (3).
(3) merge (VP)

ate:: =d V cheeses:: d

(3) is a derivation tree that records the process of structure-building. In
(3) ate has a selection feature =d and a category feature V. It merges
with cheeses that has a matching category feature d. This merge checks
the d features and builds a VP (which carries the category feature V).
It is then ready to merge with a lexical item that selects a VP (i.e., has
a selection feature =V).

Move extends the existing tree to include the landing site of the
movement. For example, in a sentence such as The rat ate cheeses the
subject moves due to the extended projection principle (EPP). This
movement is licensed by matching case features k on the mover the
rat and the licensor t. The derivation is shown in (4).

[4]

Psycholinguistic adequacy of LC parsing for MGs

(4) move (TP)

merge (T’: +k, t; -k)

t:: =v, +k, t merge (vP)

the rat, d -k merge (v’)

In (4) the T’ node is a derived category containing features +k, t from
the T head and -k from the mover which percolates up. The move
operation checks the matching k features, extends the tree with a node
carrying the remaining feature t. This is the TP node, the landing site
of the EPP movement.

Derivation trees like (4) differ from phrase structure trees gen-
erated by CFGs in that the order of leaves (terminal nodes) may not
correspond to the linear order of words in the sentence. This distinc-
tion is important when interpreting modeling results, especially when
derivation trees and phrase structure trees happen to have the same
leaf order. We will discuss this in more detail in Section 4.1.

The left-corner parser for MGs defined in Stanojević and Stabler
(2018); Hunter et al. (2019) allows for sound and complete parsing
for MGs.

The parser keeps track of four pieces of information:
• the current position in the string
• a distinguished “top” item in the parser’s storage
• “slotted” items which are phrases conjectured based on the left-
corner prediction but yet to be fully built (phrases with an open
slot in them)
• built items which are fully built phrases that become the current
top item for further operations.
Following the notation in Hunter et al. (2019), a parse item takes

the form of a single-node item or an implication item, examples of
which are found in (5) and (6), respectively.
(5) ((i,j) ·C), M

(6) ((i,j) ·C), M ⇒ ((k,l) ·K), N

[5]

Anonymous

A single-node item such as (5) states that the string span between
position i to j corresponds to a category C. The indices mark the posi-
tion between each input word. The dot (“·”) is a placeholder for “::” or
“:” which denotes whether the category following the symbol is lexical
or derived. M and N are variables for mover queues. Individual items
in a mover queue take the form of a single-node item.

An implication item is an implication from one single-node item
to another, hence the use of the implication arrow “⇒”. An implication
item such as (6) means that if in the string span i-j the parser finds a
category C, it can confirm that the span k-l corresponds to a category K.
Implication items are slotted items stored after left-corner predictions.

For our purpose, we omit the string span and mover queues in
our parse item expression and use tree nodes and lexical items rather
than categories. This abstraction increases readability and obtains a
straightforward correspondence between parsing traces and deriva-
tion trees – at the cost of being unable to distinguish potential choice
points during a parse. Since our purpose is to model offline process-
ing difficulties and highlight the role of syntactic structures, we can
assume that the parser always constructs the correct structure. There-
fore, this simplified notation will suffice. We include both the full
notation and the simplified notation of parse items in the following
paragraphs discussing parser operations and stick to the simplified
one thereafter.

At each parsing step, the operations available to the parser are
shift, connect, complete, LC predict, and unmove. Shift reads in the next
word W from the input and stores as the top item a single-node item
of the form ((i,i+1) ::W) (or ((i,i) ::W) in case W is an empty
string, which the simplified notation cannot distinguish).

The connect operation is unique to an arc-eager variant of the
parser, according to which the parser is able to connect a newly cre-
ated parse item to existing ones. Stanojević and Stabler (2018); Hunter
et al. (2019) list the following variants of connections:

(7) Connecting operations (notation adapted from Hunter et al.
2019)
a. If B is the newly created item and B⇒ A an existing one,
then connection produces A.

[6]

Psycholinguistic adequacy of LC parsing for MGs

b. If B⇒ A is the newly created item and C⇒ B an existing
one, then connection produces C⇒ A.

c. If C⇒ B is the newly created item and B⇒ A an existing
one, then connection produces C⇒ A.

d. If C⇒ B is the newly created item and B⇒ A and D⇒ C
existing one, then connection produces D⇒ A.

The operations in (7b-7d) correspond to connections where the newly
created item is the bottom or top of an existing item or where it con-
nects two items on both ends. All connection operations remove from
the storage items that are used for connection and stores as the top
item the new item produced by connection.

In departure from Stanojević and Stabler (2018) and Hunter et al.
(2019), We highlight (7a) as a separate operation, Complete, which ap-
plies to both arc-eager and arc-standard strategies. Complete removes
an implication item from memory when the single-node item on the
left of the implication arrow is found. The item on the right of the
arrow now becomes the top item, ready for further operations.

LC predict and unmove, which are crucial operations for the LC
parser, are discussed now with examples. LC predict creates an impli-
cation item based on the left-corner of a subtree. Consider the previous
merge example in (3) which creates a VP ate cheeses. Given a gram-
mar that allows this merge, ate is the left-corner of the VP. If ate is the
current top item, the parser produces an implication item like (8).
(8) DP ⇒ VP

C.f., ((k,j) ·d) ⇒ ((i,j) :V) (assuming that ate is between position
i and k)

(8) is an implication from the verb’s complement, DP, to its parent VP.
It states that if the parser can find a DP, it can confirm the existence
of its parent VP. The full notation contains the same core information
with the categories. The string spans show that based on the input ate
between i and k, the parser makes predictions on the position imme-
diately after it, namely, k to j, and on the category of a larger span, i
to j, that corresponds to the entire VP structure.

Finally, the unmove operation constructs the landing site of a
movement. We follow the move-eager strategy described in Hunter
et al. (2019), where the parser can immediately apply unmove upon

[7]

Anonymous

encountering the licensing head of the movement. In the example
provided in (4), t licenses EPP movement. When t is processed, the
parser produces the following:
(9) a. vP ⇒ T’

C.f.,((i,j):v),((k,l):-k)⇒((i,j):+k t),((k,l):-k)
(assuming that t is at position i and the move has been found and
processed earlier between position k and l)

b. T’ ⇒ TP
C.f.,((i,j):+k t),((k,l):-k)⇒((k,j):t)

c. (combining 9a and 9a) vP ⇒ TP

Let us first unpack the full notation in (9a). This parse item indicates
a left-corner prediction based on a t node at position i. It means that
if from the string span immediately after i the parser finds a vP with
a mover inside it moving for k, the parser can confirm a node that
would become a TP after the movement for k is licensed. This is a T’.
The mover inside vP, which is assumed to be found earlier at position
k-l, carries over to the T’ node.

The full notation in (9b) indicates the application of a move oper-
ation discussed earlier in (4). As allowed by the move-eager strategy,
the parser can take the mover, ((k, l) :-k), to be the one that satis-
fies the k feature left in the T’ node. By applyingmove, the landing site,
TP, is created right away. The beginning of the string span is updated
to k to cover the early encountered mover.

The simplified notations indicate the above operations using tree
nodes. The parse items are further simplified as (9c) since the internal
structure, T’, is considered found by the parser.

Hunter et al. (2019) posit the need for the move-eager strategy to
model active gap-finding but nothing technical seems to hinge on this.
We address this in Section 4.2 and show that incorporating immediate
extensions into our model does yield desirable processing predictions.

Putting together, (10) shows the steps of an arc-eager LC MG
parser building the derivation tree in (11) for the sentence The rat
ate cheeses.
(10) Step parse item

1. shift the:: the::

[8]

Psycholinguistic adequacy of LC parsing for MGs

2. LC the:: NP ⇒ DP

3. shift rat:: + complete DP:

4. LC the rat: v’ ⇒ vP

5. shift t:: t::
v’ ⇒ vP

6. LC t:: + move + connect v’ ⇒ TP

7. shift v:: v::
v’ ⇒ TP

8. LC v:: + connect VP ⇒ TP

9. shift ate: ate::
VP ⇒ TP

10. LC ate:: + connect DP ⇒ TP

11. shift cheeses:: + complete TP

(11) TP

T’

t:: =v, +k, t vP

DP

the:: =n d rat:: n

v’

v:: =V =d v VP

ate:: =d V cheeses:: d

The first five steps in (10) should look unsurprising. We examine
step 6 in more detail. A LC predict followed by unmoved based on t first
produces vP ⇒ TP, as discussed earlier. Given the arc-eager specifi-
cation, the parser is able to immediately connect newly created parse
items with structures already built. Therefore, vP ⇒ TP connectswith
v’ ⇒ vP created at step 4, resulting in v’ ⇒ TP.

This ability to connect items immediately is unique to arc-eager
parsers. In contrast, an arc-standard parser would instead store vP ⇒

[9]

Anonymous

TP as a separate parse item at step 6. As shown by Resnik (1992),
the choice of arc-strategy impacts the processing predictions of a left-
corner parser for CFGs. We will see in Section 3.4 that this holds true
for a LC MG parser.

Also, in (10) the parse item v’ ⇒ vP is stored in memory at steps
4 and 5, for a total of two steps. This is the tenure of the parse item.
Next, we explore the role of tenure as the basis for complexity metrics
in LC MG parsing.

2.2 Tenure-based complexity metric

Tenure, one of the key measurements of memory resources in top-
down MG modeling work, applies straightforwardly to left-corner MG
parsing. For left-corner parsing, the tenure of a parse item is still the
number of steps it is retained in memory. From a trace of the parser’s
progression such as (10), one can already calculate the tenure for each
parse item and make processing predictions. For example, the parse
item v’ ⇒ vP has a tenure of 2: it is stored in memory at steps 4 and
5.

While it is straightforward to calculate tenure from a parsing
trace, it can be humanly challenging to reconstruct from the parse
items the syntactic tree built at a given step. Representing parse items
and parser behaviors in trees helps visualize how tree geometry affects
parsing. This is when annotated derivation trees can be helpful.

Tree annotations are central to modeling work using top-down
MG parsers. Annotated derivation trees are condensed yet complete
representations of a parse. They allow us to track the parser’s traver-
sal through the tree structure and calculate the associated memory
usage. In top-down MG parsing, representing parse items using tree
annotations is uncomplicated because the tree nodes have one-to-one
correspondences to the parse items. For example, consider a top-down
parse that conjectures a DP node and from it derives determiner (Det)
and NP.

(12) a. DP
Det N P parser rule

b. Step 1. DP memory stack
Step 2. Det | NP

[10]

Psycholinguistic adequacy of LC parsing for MGs

c. DP

Det NP

1

2

2 2

tree annotation

(12a) is the parser rule for top-down prediction1, indicating that Det
and NP are derivable from DP. In (12b), the parser predicts and stores
DP at step 1. At step 2, by applying (12a), the parser removes DP,
predicts and stores Det and NP. In (12c), the superscript (index) indi-
cates the step the item/node enters the memory storage, the subscript
(outdex) the step the item/node exits the storage.

LC MG parsing differs from top-down MG parsing in that a parse
item does not always correspond to a single node in the derivation
tree. Furthermore, a node in the tree can be predicted multiple times
throughout LC MG parsing. To faithfully represent the behavior of
the LC parser, we need to adjust the tree annotation scheme. (13)
illustrates how annotation works for a LC MG parse of the familiar
sentence The rat ate cheese.
(13) TP

T’

t:: vP

DP

the:: rat::

v’

v:: VP

ate:: cheeses::

1

2

2-3

4

2-3

3

4-6

6

4-6-8

8

5

6

6

6

6-8-10-11

11

7

8

8-10

11

9

10

10-11

11

First, in LC MG parsing a parse item corresponds to a single node
if it is a leaf node or a newly completed node. In the case of a leaf node,
the index records the step when the parser shifts it into memory. If it
is a newly completed node, the index records the complete step. The

1The rule notation is adapted from Kobele et al. (2013). The current adap-
tation makes predictions based on binary merges while the original rule is more
general.

[11]

Anonymous

outdex for a single node, on the other hand, indicates the step when
the node/item exits memory as it is used in any parser operation. For
example, the leaf node the is introduced at step 1 as the parser shifts
and exits memory at step 2 when used for a LC prediction. It has an
index of 1 and an outdex of 2.

Next, when a parse item represents an implication, it corresponds
to two nodes in the derivation tree. The indices on the nodes record
the steps at which the nodes are part of a parse item. If a node is part of
a strictly different parse item at a different step in the parsing process,
we record the step in the index and connect the recorded steps with a
dash (“-”). The outdex records the step when a node is no longer part
of any implication.

For example, in (13), the vP node is first predicted by a LC pre-
diction based on its daughter DP at step 4. The same index is found on
the v’ node, which belongs to the same parse item v’ ⇒ vP that can
be found in (10) at step 4. This vP node is predicted a second time
based on its sister t at step 6. It is now part of a different parse item
v’ ⇒ vP. Thus, the index of the vP node has 4-6. Also at step 6, due
to the connection mentioned earlier, the vP node is no longer part of
any parse item. The outdex of vP is therefore 6.

This tree annotation scheme allows for exact reconstructions of
the parse items at each step. At any given step, the parse items are
subtrees that are annotated up to that step. For example, at step 5, two
subtrees are built, as circled in (14). The first subtree is the vP with
un-outdexed vP and v’ nodes. The other subtree is the un-outdexed t.
These two subtrees correspond to the two parse items t and v’ ⇒ vP
found in (10) at step 5.

[12]

Psycholinguistic adequacy of LC parsing for MGs

(14) TP

T’

t:: vP

DP

the:: rat::

v’

v:: VP

ate:: cheeses::

1

2

2-3

4

2-3

3

4

4

5

Moreover, by looking for the matching dash-connected index pair
on two nodes, the parse item stored between these two steps can be un-
ambiguously recovered. And by then taking the difference of the two
steps, we have item tenure, the duration that the parse item is stored
in memory2. For example, the vP and v’ nodes in (13) have matching
dash-connected indices of 4-6. The parse item these two nodes consist
of is v’ ⇒ vP, carrying an item tenure of 2 (=6-4).

Just as in top-down MG parsing, one can explore a variety of
complexity metrics based on item tenure. Here we identify just one
such possibility: MaxTi tem, which is the maximal duration that any
item remains in memory. The MaxTi tem of a parse can be calculated
solely from the annotated derivation tree: it is the maximum differ-
ence among all dash-connected indices on tree nodes. For example,
the MaxTi tem of (13) is 2 found on multiple items.

MaxTi tem is chosen as the candidate for the complexity metric for
two reasons. First, its top-down MG parsing counterpart, MaxT, has
been shown to reliably capture processing difficulties (Kobele et al.
2013; Graf et al. 2017, a.o.). MaxTi tem is a natural first candidate
to consider in LC MG parsing. Second, given the current annotation

2This item tenure calculation only applies to parse items that correspond to
two nodes. Given the current parser setup, items that correspond to one node
remain in memory for one step. Then they are either removed from memory at
the same step for complete, or at the next step for LC prediction. We thus ignore
these parse items in the memory cost calculation.

[13]

Anonymous

scheme, calculating the maximum of item tenure requires only a visual
check on the nodes.

The results of our model, to be discussed next, suggest that
MaxTi tem as the complexity metric correctly predicts the processing
difficulty difference between left-, center-, and right-embeddings It is
also sensitive to arc-strategies and makes desirable predictions.

3 RESULTS

The processing phenomena to be modeled are the processing diffi-
culties of left-, center-, and right-embedding structures. A total of six
target sentences, found in (15) - (17), are included in the analysis.
(15) Left-embedding

a. The rat’s cheese is here. 1-layer
b. The rat’s cheese’s eyes are missing. 2-layer

(16) Center-embedding
a. The rat that the cat bit is here. 1-layer
b. The cheese that the rat that the cat bit ate is here. 2-layer

(17) Right embedding
a. The rat that ate cheeses is here. 1-layer
b. The rat that ate the cheese that had eyes is here. 2-layer

For each target sentence, two arc-strategies are included. The total
number of LC MG parses is 12 (3 directions × 2 layer conditions
× 2 arc-strategies). For each embedding direction, we compare the
MaxTi tem of 1-layer and 2-layer sentences for both arc-eager and arc-
standard parses. The overall results are in Table 1.

Table 1:
Modeling results

based on
MaxTi tem

MaxTi tem

Left center right
1-layerarc-eager 2 10 6
2-layerarc-eager 2 24 6
1-layerarc-standard 4 15 13
2-layerarc-standard 4 29 27

[14]

Psycholinguistic adequacy of LC parsing for MGs

Parser Left center right
LCMG (arc-eager) O(1) O(n) O(1)
LCMG (arc-standard) O(1) O(n) O(n)
LCC FG (arc-eager) O(1) O(n) O(1)
LCC FG (arc-standard) O(1) O(n) O(n)
Human parser O(1) O(n) O(1)

Table 2:
Modeling results
in big-O
notation. Table
format, CFG and
Human parser
results (marked
in gray) from
Resnik 1992.

The parsing complexities under different conditions can be sum-
marized using big-O notations (Resnik 1992), which is found in Table
2.

Overall, the current model successfully captures different human
parsing difficulties between the three embeddings. Using MaxTi tem

as the complexity metric, left- and right-embeddings exhibit constant
memory costs as the number of layers increases. In contrast, center-
embeddings show a memory load increase that is proportional to the
number of layers. Furthermore, MaxTi tem exhibits sensitivity to arc-
strategies. We next look at the results from each embedding direction,
followed by a discussion on arc-strategies.

3.1Left-embedding

The target sentences for left-embedding are (18) and (19). Following
a functional category analysis of the possessive head (Adger 2003),
the “b” sentences are the leaf nodes of the target sentences, which the
parser takes as input strings.
(18) a. The rat’s cheese is here.

b. the rat ’s cheese t is here

(19) a. The rat’s cheese’s eyes are missing
b. the rat ’s cheese ’s eyes t are missing

Under the arc-eager strategy, tree annotations for (18) and (19)
are found in Figure 1. MaxTi tem remains constant at 2 for both layer
conditions (and at 4 for arc-standard parses). This suggests that, as
the number of layers increases, the parser only requires a constant
memory space to process left-embeddings.

[15]

Anonymous

Figure 1:
(Arc-eager) tree
annotations for
left-embeddings

TP

T’

t:: vP

DP

DP

the rat

pos’

’s cheese

v’

is here

10-12-13

13

1

2

2-3

3

2-3

4

4-6-7

8

4-6

6

5

6

6-7

7

8-10-12

12

8-10

10

9

10

10

10

11

12

12-13

13

TP

T’

t:: vP

DP

DP

DP

the rat

pos’

’s cheese

pos’

’s eyes

v’

are missing

14-16

17

1

2

2-3

3

2-3

4

4-6

6

4-6-7

8

5

6

6-7

7

8-10

10

8-10-11

12

9

10

10-11

11

12-14-16

16

12-14

14

13

14

14

14

15

16

16-17

17

This constant memory load does not follow from the behavior
of a top-down parser. We briefly pause here to see why. Assuming a
correct parse, a top-down parser would prioritize the branch contain-
ing the first word at each top-down prediction. In doing so, it needs
to keep track of the sister nodes on the other branch at each predic-
tion point. This is memory costly, and the memory cost grows with
the depth of the first word (i.e., the number of layers). In contrast, a
LC parser avoids this memory strain by using bottom-up information
directly from the input. As shown in Figure 1, regardless of the first
word’s depth, the parser can use it early at step 2 as the left-corner to
efficiently build structures.

It is worth noting that the current syntactic assumption does not
involve movement within the DP, making the structure indistinguish-
able from one derived by CFGs. It is thus unsurprising to see similar
processing predictions based on a LC parser. As hinted earlier, We dis-
cuss an alternative structure in Section 4.1.

3.2 Center-embedding

The target sentences for center-embedding are the following.

(20) a. The rat that the cat bit is here.
b. the d-rel rat that the cat t v bit t is here

[16]

Psycholinguistic adequacy of LC parsing for MGs

(21) a. The cheese that the rat that the cat bit ate is here.
b. the d-rel cheese that the d-rel rat that the cat

t v bit t v ate t is here

The “b” sentences are the leaf nodes (input string) following a promo-
tion analysis for relative clauses (Kayne 1994).

Assuming an arc-eager LC MG parse, tree annotation excerpts for
the target sentences are in Figure 2. For the 1-layer center-embedding,
MaxTi tem is 10, found on bit and the VP node (shaded), which corre-
sponds to the parse item V ⇒ VP. We can verify the result against the
input string (20b). After reading the third word, rat, the parser builds
the relativized object DP, makes a LC prediction from it, and stores V
⇒ VP. This item is held in memory until the VP node is predicted
again as the sister of v which appears near the end of the input string.

For the 2-layer center-embedding, MaxTi tem is 24, found on ate
and the VP node (shaded), corresponding to the parse item V ⇒ VP.
With a higher MaxTi tem of 24 compared to the 1-layer case, the model
predicts that the 2-layer center-embedding is more difficult to parse
for the LC parser.

By comparing the two layer conditions, we can see that the
MaxTi tem grows with the number of embedding layers for center-
embeddings. MaxTi tem is associated with the VP node which is part of
two different parse items. First, at step 6, it is in V ⇒ VP created by
a LC prediction based on the relativized object. Then, at step 30, it is
in VP ⇒ v’ created by a LC prediction based on v and exits memory
at the same step due to connection. Between the two steps, the parser
needs to hold the item V ⇒ VP in memory while it first builds the
subject DP. Since the embedding layers are within the subject DP, the
more layers there are, the longer the hold. This is how MaxTi tem grows
with the number of embedding layers.

3.3Right-embedding

Finally, the two target sentences for right-embeddings are in (22) -
(23). Same as before, the “b” sentences are the leaf nodes assuming a
promotion analysis for relative clauses.
(22) a. The rat that ate cheeses is here.

[17]

Anonymous

Figure 2:
(Arc-eager) tree
annotations for

center-
embedding

...

DP

the:: NP

NP

that:: TP

T’

t:: vP,-nom

DP, -nom

the:: cat::

v’

v:: VP

bit:: DP -rel

d-rel:: rat

1

2

2-8

8

2-8-14-16-17

18

3

4

4-5

5

4-5

6

6-16-17

17

6-16

16

7

8

8-14

14

8

8

9

10

10-11

11

10-11

12

12-14-16

16

12-14

14

13

14

14

14

15

16
←MaxTi tem

MaxTi tem→

...

DP

the NP

NP

that TP

T’

t:: vP

DP

the NP

NP

that TP

T’

t:: vP

DP

the cat

v’

v:: VP

bit DP

d-rel rat

v’

v VP

ate DP

d-rel cheese

1

2

2

8

2-8-28-30-31

32

3

4

4-5

5

4-5

6

6-30-31

31

6-30

30

7

8

8-28

28

8

8

9

10

10-16

16

10-16-22-24-25

26

11

12

12-13

14

12-13

13

14-24

25

14-24

24

15

16

16-22

22

16

16

17

18

18-19

19

18-19

20

20-22-24

24

20-22

22

21

22

22

22

23

24

26-30

30

26-28

28

27

28

28

28

29

30
←MaxTi tem

↙MaxTi tem

[18]

Psycholinguistic adequacy of LC parsing for MGs

b. the d-rel rat that t v ate cheeses t is here

(23) a. The rat that ate the cheese that had eyes is here.
b. the d-rel rat that t v ate the cheese that t v

had eyes t is here

MaxTi tem for both layer conditions is 6, which predicts that the
parser only needs a constant amount of memory resources to process
right-embeddings. We see why in the tree annotation excerpts in Fig-
ure 3. For both layer conditions, the longest-held nodes are the NPs
(shaded). The NP nodes are part of the parse item NP ⇒ DP created
by a LC prediction based on the. The parser holds the item in mem-
ory until it can connect to the lower structure. Meanwhile, the parser
builds the subject (and the relative pronoun). In right-embeddings,
the subject does not increase in complexity as the embedding layers
increase. This results in a constant hold time for the parser. Therefore,
MaxTi tem predicts that only a constant amount of memory resources
is needed to process right-embeddings.

Note that there is another node bearing MaxTi tem in the 2-layer
tree in Figure 3, namely, the more deeply embedded NP node. This
node is held in memory for the same reason as the topmost NP: the
node is predicted and held in memory while the parser operates on
its sister and is removed from memory after the parser finishes build-
ing the subject and the relative pronoun. While the maximum of item
tenures does not increase with the number of layers, a highly tenured
node found in the embedded layer reflects a general increase in mem-
ory cost associated with additional layers. We will see the effect of this
in other complexity metric candidates in Section 4.4.

[19]

Anonymous

...

DP

the:: NP

NP

that:: TP

T’

t:: vP

DP

d-rel:: rat

v’

v:: VP

ate:: cheeses13

14

14-15

15

12-14

14

11

12

7

8

8

8

1

2

2-8-10-12-14-15

16

2-8

8

8-10

10

10

10

9

10

3

4

4-5

6

4-5

5

6-10-12

12

6-10

10

←MaxTi tem

←MaxTi tem

...

DP

the:: NP

NP

that:: TP

T’

t:: vP

DP

d-rel rat

v’

v:: VP

ate:: DP

the:: NP

NP

that:: TP

T’

t:: vP

DP

d-rel:: cheese::

v’

v:: VP

had:: eyes::

1

2

2-8

8

2-8-10-12-14-16-22-24-26-28-29

30

3

4

4-5

5

4-5

6

6-10

10

6-10-12

12

7

8

8

8

8-10

10

9

10

10

10

11

12

12-14

14

13

14

14-16

16

15

16

16-22

22

17

18

18-19

19

18-19

20

20-24-26

26

20-24

24

21

22

22

22

22-24

24

23

24

24

24

25

26

26-28

28

27

28

28-29

29

←MaxTi tem

←MaxTi tem

← also MaxTi tem

Figure 3: (Arc-eager) tree annotations for right-embedding

[20]

Psycholinguistic adequacy of LC parsing for MGs

3.4Arc-strategies

The effect of arc-strategy is captured byMaxTi tem. This is most straight-
forwardly seen in the right-embeddings. In the 1-layer right-embedding
tree built by an arc-eager parser, as shown on the left in Figure 3, the
topmost DP node has 2-8 in its index. It is first predicted at step 2 as
part of the item NP ⇒ DP. At step 8, the parser operates as follows:

(24) Step parse item (w/ index)

... ...
2NP ⇒ 2DP

8.1 LC that:: ...
TP ⇒ 8NP

2NP ⇒ 2DP

8.2 unmove ...
TP ⇒ 2−8NP

2NP ⇒ 2DP

8.3 connect at NP ...
TP ⇒ 2−8DP

Step 8.1 is a LC prediction based on the promotion movement licensor
that, followed by unmove at step 8.2, creating the parse item TP ⇒
NP. Crucially at step 8.3, the parser is able to connect this newly built
item to the existing NP ⇒ DP, creating TP ⇒ DP. The DP node now
becomes part of a different parse item. This change is reflected by 2-8
in its index, from which we find MaxTi tem = 6.

In contrast, an arc-standard parser cannot connect a newly built
parse item to existing ones. This affects processing predictions as can
be seen from the tree annotation excerpt from an arc-standard parser
(25).

[21]

Anonymous

(25) ...

DP

the:: NP

NP

that:: TP

T’

t:: vP

DP

d-rel:: rat

v’

v:: VP

ate:: cheese13

14

14-15

15

12-14-15

15

11

12

7

8

8

8

1

2

2-15

16

2-8-15

15

8-10-15

15

10

10

9

10

3

4

4-5

6

4-5

5

6-12-15

15

6-10-15

15

In (25), the topmost DP is predicted similarly at step 2 as part of the
parse item NP ⇒ DP. According to the arc-standard specification, the
predicted NP node is considered found only when the entire subtree
it dominates is built. This means the parse item NP ⇒ DP remains in
memory until step 15 when the parser fully builds the NP and com-
pletes DP. This is where we find the MaxTi tem of 13 (=15-2), which
is larger than that in the arc-eager parse.

Moreover, because the arc-standard parser waits to complete the
entire subtree before integrating it to the topmost DP, MaxTi tem which
associates with the DP grows proportionally with the number of em-
bedding layers in right-embeddings. This prediction aligns with that of
an arc-standard LC CFG parser but is not how humans behave (Resnik
1992) (see arc-standard tree annotations for all embedding conditions
in Appendix A.1).

[22]

Psycholinguistic adequacy of LC parsing for MGs

4DISCUSSION

4.1Left-embedding: an alternative structure

The processing predictions made by the current LC MG parser are sim-
ilar to those made by a LC parser for CFG. As briefly mentioned in
Section 3.1, this is to be expected for left-embeddings. In the current
model, the syntactic analysis lacks any movement. As a result, the
derivation tree derived by MGs is structurally identical to one that
is derived by CFGs. Here we explore a movement-based analysis for
left-embeddings and see if this affects the processing predictions.

The movement-based analysis to derive left-embeddings, or pos-
sessive structures, stems from the proposals treating the possessor
as the internal argument of the possessee. Concretely, a 1-layer left-
embedding such as (18), here repeated as (26), has a movement-based
analysis schematized in (27).
(26) [The rat’s cheese] is here.
(27) DP

D’

’s NrelP

DP

the rat

Nrel’

Nrel cheese

This particular implementation is based on Kobele (2021). The lexical
item Nrel turns a noun phrase into a relational noun phrase (NrelP).
The DP that stands in possessive relationship to the noun phrase
merges at spec NrelP and subsequently raises to the spec DP.

Under this analysis, the parser still predicts a constant memory
load when the number of embedded layers increases. Both 1-layer and
2-layer left-embeddings have a MaxTi tem of 2 assuming an arc-eager
parse (tree annotations in Appendix A.2).

This eliminates the potential confound of a CFG-like analysis for
left-embeddings, which might obscure the model’s prediction.

[23]

Anonymous

4.2 Move-strategy

The current LC MG parsing model employs a move-eager strategy as
outlined by Hunter et al. (2019), where the parser immediately con-
structs the landing site upon encountering the movement licensor. Al-
though the original proposal does not technically mandate this move-
eagerness, the strategy influences processing predictions, as measured
by MaxTi tem.

Hunter et al. (2019) model the active-filler strategy by specifying
connection preferences in a LC MG parser. The active-filler strategy
refers to the human processing tendency to hypothesize gap positions
actively at the first available position. Evidence for this processing
tendency involves the reading time for sentences such as (28). In (28),
there is a reading slowdown at the potential gap position, books (Stowe
1986, cited in Hunter et al. 2019).

(28) What John buys books about yesterday?

Assuming the active-filler strategy, the human parser predicts a gap
for what at the object position of buy, which is the first available gap
position. When the actual object books is later read and fills this gap,
backtracking is required, causing the reading slowdown.

To model this, Hunter et al. (2019) contrast a LC MG parse of (28)
with that of (29):

(29) What John buys?

When building structures for (28) and (29), the parser takes the same
initial steps, which include building the base-merge position and land-
ing site of what, namely, the V’ and CP. When the parser reaches John
and LC predicts based on it, a correct parse for (29) is to connect the
existing V’ as the sister of John, building (30). This amounts to con-
jecturing the gap position of what.

(30) VP

John V’

V what

[24]

Psycholinguistic adequacy of LC parsing for MGs

In contrast, to correctly parse (28), the V’ containing what needs
to be disconnected after the parser processes the input John. If a parser
preferred connection at this point while the actual input sentence is
(28), later backtracking is expected. This models the reading slow-
down.

Specifying the parser’s preference for connection is independent
of whether the landing site CP is built. As Hunter et al. (2019, f.n.
8) point out, the “move-standard” parser of Stanojević and Stabler
(2018), which builds the landing site only when everything it dom-
inates is built, also allows choices between connection preferences.
However, the timing of building the landing site (unmove) has conse-
quences on processing predictions which are captured by MaxTi tem.

Take the right-embedding parses for example. As discussed in
Section 3.3, a move-eager parser predicts a constant memory cost
across layer conditions. The same prediction does not hold for a move-
standard parser. This can be seen in the tree annotation excerpts in
(31) and (32).

(31) ...

DP

the:: NP

NP

that:: ...

...rat ate cheeses

2-15

16

1

2

2-15

15

8-15

15

7

8

(32) ...

DP

the:: NP

NP

that:: ...

...rat ate the cheese that...

2-29

29

1

2

2-29

29

8-29

29

7

8

(31) illustrates part of a 1-layer right-embedding parse follow-
ing a move-standard strategy. When the parser processes that which
licenses the promotion movement, it LC predicts based on that, pre-
dicting the lower NP. Due to the move-standard strategy, the parser
cannot immediately unmove based on the lower NP. As a result, the
NP cannot be correctly connected to the higher structure built earlier.
Building the landing site and connecting it to the higher structure is
only possible at step 15 as the entire subtree is built. This results in a

[25]

Anonymous

long, 13-step (=15-2) wait for the item NP ⇒ DP, which is where we
find MaxTi tem.

For the 2-layer sentence in (32), the MaxTi tem is a larger value of
27 found on the same parse item. This predicts an increased memory
cost as the number of embedding layers increases. The larger MaxTi tem

is caused by a longer wait of the tenured item as the parser builds a
larger subtree than in the 1-layer tree. In fact, this predicts a memory
cost growth that is proportional to the number of embedding layers,
which is not true for human parsers.

4.3 Apparent difficulties with MaxTi tem

The center-embedding sentences we examined are those of object rel-
ative clauses3. In terms of processing difficulties, they contrast with
stacked object relative clauses, which also involve multiple object rel-
ative clauses, but are less difficult to process as the number of relative
clauses increases. Consider (33).
(33) Stacked object relative clauses

a. The cheese [that the rat ate] [that the cat lost] is here.
b. The cheese [that the rat ate] [that the cat lost] [that the
dog wanted] is here.

As the number of that clause increases from two to three, the sentence
is still reasonably easy to process, unlike center-embeddings where the
upper limit of embedding layers is three.

Assuming that the intuition is true that humans process stacked
object relative clauses differently from center-embeddings, we can
use the current processing model to evaluate syntactic proposals
for stacked relative clauses, based on whether their corresponding
MaxTi tem encounters difficulties predicting the processing phenomenon.
To demonstrate, We compare two such syntactic proposals, namely,
the promotion analysis and an adjunction analysis. The results suggest

3Center-embeddings of sentential subjects, e.g., that that the world is round is
obvious is dubious, are also “almost unintelligible” (Kuno 1974, 119). Although
not discussed in this paper, MaxTi tem in the current model predicts the processing
difficulty of center-embeddings of sentential subjects, too.

[26]

Psycholinguistic adequacy of LC parsing for MGs

that the processing difficulty follows from the syntactic structure of
the adjunction analysis but not the promotion analysis.

First, based on a promotion analysis for relative clauses, as we
did for embedded sentences, the processing difficulty of stacked object
clauses is unexpected according to MaxTi tem. The MaxTi tem of a two-
clause stacked object relative clause is 20, compared to 34 of a three-
clause counterpart. This predicts that as the number of stacked clauses
increase, the sentence becomes more difficult to process. Upon closer
examination of the tree annotations, we can verify that the increase
in difficulty, similar to that of center-embeddings, is proportional to
the number of clauses.

The tree annotation excerpt in (34) is from a parse for sentence
(33a) assuming the promotion analysis (full tree annotations can be
found in Appendix A.3 Figure 8). MaxTi tem is found on the topmost
DP and NP nodes, which correspond to the parse item NP ⇒ DP. This
parse item is created by a LC prediction based on the first word the.
The item remains in memory until the parser processes the second that
in the string, which belongs to the same clause but occurs towards the
end of the sentence. This results in large item tenure. While the parser
holds the item in memory, it processes the DP which “intervenes” be-
tween the and that because the promotion structure derives stacked
clauses using roll-up movement, as can be seen from the movement
arrows in (34). And it is not difficult to tell that as the number of
stacked clauses increases, the and that are separated by more materi-
als, MaxTi tem increases accordingly.

[27]

Anonymous

(34) ...

DP

the NP
...

that ...

DP

the cat

...

lost DP

d-rel ...

that ...

DP

the rat

...

ate DP

d-rel cheese

v’

is here1

2

3

4

5

6

6-7

7

6-7

8

2-22-28-30-31

32

21

22

4-10-16-18-19

20

9

10

2-22

22

Next, we examine the adjunction structure schematized in (35).

(35) ...

DP

the NP

cheese CPi

CPii

that the rat...ate wh-rel

CPiii

CPiv

that the cat...lost wh-rel

CPv

that the dog...wanted wh-rel

v’

is here1

2

2-4

4

2-4-18-32-36-42-44-45

46

3

4

4-18

18

8-14-16-17

18

18-32

32

22-28-30-31

32

32-36

36

[28]

Psycholinguistic adequacy of LC parsing for MGs

The structure in (35) corresponds to the three-clause sentence in
(33b). Two things are worth pointing out about the structure. First,
(35) assumes a wh-movement analysis of relative clauses (Chomsky
1977). The head noun c-commands the relative pronouns wh-rel in
each clause. They also stand in matching/agreement relation ensur-
ing the correct interpretation of the relative pronouns (Aoun and Li
2003). Next, the multiple adjunction of CPs is one way to organize
stacked relative clauses. It is chosen for simplicity because it involves
no additional silent heads while maintaining binary branching.

Based on the current model, the processing difficulty associated
with the adjunction structure is roughly consistent with the most com-
plex clause, irrespective of the number of stacked clauses. This seems
more aligned with our intuition. In the examples in (33) where the
stacked clauses are equally complex, MaxTi tem is 14 for both two-
clause and three-clause sentences. For example, in the three-clause
structure in (35), MaxTi tem is found on the CPi node. This node is
stored in memory when the parser processes the word cheese and is
removed from memory until the first relative clause CPii is built. A
two-clause structure has the same MaxTi tem profile, which readers can
verify in Appendix A.3 Figure 9.

Returning to the three-clause structure in (35), as the first clause
is built, the parser conjectures its sister node CPiii and holds it in mem-
ory. This node remains in memory until its left-corner, CPiv , is built.
If CPiv is sufficiently complex, MaxTi tem could then shift to the CPiii

node. Finally, with the right structure, MaxTi tem can also be trivially
found in any of the stacked clauses.

It is beyond the scope of this paper to determine the correct syn-
tactic structures for stacked relative clauses or to experimentally verify
the processing difficulties that arise as the number of stacked clauses
increases. Rather, the discussion is to highlight the potentials of our
processing model as a tool for syntactic proposal verification, which
future research can further exploit.

4.4Other Tenure-based metrics in LC MG parsing

MaxTi tem is a tenure-based complexity metric that effectively captures
the processing phenomena in our model. The calculation of MaxTi tem

[29]

Anonymous

relies solely on annotated derivation trees. This is easier and more in-
tuitive for a human observer than delving into the trace of a parse.
SumTi tem and AvgTi tem are two additional complexity metrics deriv-
able from annotated derivation trees.

SumTi tem, the total non-trivial item tenure (i.e., tenure greater than
1) of the entire parse, is calculated by adding up the differences of
each dash-connected indices that are greater than 1 and then dividing
the total by 2. Dividing the sum of differences by 2 gives the correct
SumTi tem because only parse items that correspond to two nodes (im-
plication items) can be stored for non-trivial steps. For such an item,
its tenure is always reflected in the matching dash-connected indices
on a pair of nodes, as discussed in Section 2.2.

SumTi tem for the current model can be found in Table 3.
Table 3:

Modeling results
based on
SumTi tem

SumTi tem

Left center right
1-layerarc-eager 6 30 20
2-layerarc-eager 8 84 38

Overall, the 2-layer sentences have a higher SumTi tem than their
1-layer counterparts. Since SumTi tem measures memory usage over the
entire parse, the results are expected as it reflects general factors such
as length that impact processing. Moreover, from 1-layer to 2-layer
sentences, the SumTi tem of center-embeddings grows faster than that
of left- and right-embeddings. This aligns with the trend that MaxTi tem

exhibits.
AvgTi tem, the average tenure of all tenured items, is also derivable

from annotated derivation trees. AvgTi tem equals SumTi tem divided by
the number of tenured parse items. And the number of tenured items
is the number of unique dash-connected index pairs whose difference
is non-trivial.

AvgTi tem for the current model can be found in Table 4. The
trend found in the predictions of SumTi tem continues in those of
AvgTi tem. As the number of layers increases, AvgTi tem grows faster

Table 4:
Modeling results

based on
AvgTi tem

AvgTi tem

Left center right
1-layerarc-eager 2 4.29 2.86
2-layerarc-eager 2 7 3.16

[30]

Psycholinguistic adequacy of LC parsing for MGs

for center-embeddings than for left- and right embeddings. For the
left-embeddings, AvgTi tem is the same for both layer conditions be-
cause all tenured items happen to have a tenure of 2.

The above test-run of SumTi tem and AvgTi tem along with the main
results from MaxTi tem shows their potential as valid complexity met-
rics for LC MG parsing models. It is worth further exploring their em-
pirical coverage as well as their interactions in potential ranked met-
rics discussed in Graf et al. (2017). We leave these to future research.

5CONCLUSION

To conclude, the modeling results suggest that left-corner parsing
for MGs successfully captures human processing differences in left-,
center-, and right-embeddings. MaxTi tem is shown to be a valid com-
plexity metric for our processing model. The results extend the parsing
account for this processing contrast to another grammar formalism,
MGs, and suggest that left-corner parsing for MGs is viable as a psy-
cholinguistically adequate model for human sentence processing. The
proposed tree annotation scheme invites future research into the space
of proper complexity metrics for LC parsing for MGs.

REFERENCES

David ADGER (2003), Core syntax: A minimalist approach, volume 33, Oxford
University Press Oxford.
Joseph E. AOUN and Yen-hui Audrey LI (2003), Essays on the Representational
and Derivational Nature of Grammar: The Diversity of Wh-Constructions, The MIT
Press, ISBN 9780262267229, doi:10.7551/mitpress/2832.001.0001,
https://doi.org/10.7551/mitpress/2832.001.0001.
Yehoshua BAR-HILLEL (1966), Language and information; selected essays on
their theory and application, Foundations of Language, 2(2):192–199.
Noam CHOMSKY (1977), On wh-movement, Formal Syntax, pp. 71–132.
Noam CHOMSKY (2014), The minimalist program, MIT press.

[31]

https://doi.org/10.7551/mitpress/2832.001.0001

Anonymous

Aniello DE SANTO (2019), Testing a minimalist grammar parser on italian
relative clause asymmetries, in Proceedings of the Workshop on Cognitive
Modeling and Computational Linguistics, pp. 93–104.
Thomas GRAF, James MONETTE, and Chong ZHANG (2017), Relative clauses as
a benchmark for minimalist parsing, Journal of Language Modelling, 5(1):57–106.
Tim HUNTER, Miloš STANOJEVIĆ, and Edward STABLER (2019), The
active-filler strategy in a move-eager left-corner minimalist grammar parser, in
Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics,
pp. 1–10.
Fred KARLSSON (2007), Constraints on multiple center-embedding of clauses,
Journal of Linguistics, 43(2):365–392.
Richard S KAYNE (1994), The antisymmetry of syntax, 25, mit Press.
Gregory M KOBELE (2021), The saxon genitive, unpublished manuscript.
Gregory M KOBELE, Sabrina GERTH, and John HALE (2013), Memory resource
allocation in top-down minimalist parsing, in Formal Grammar, pp. 32–51,
Springer.
Susumu KUNO (1974), The position of relative clauses and conjunctions,
Linguistic Inquiry, 5(1):117–136.
So Young LEE (2018), A minimalist parsing account of attachment ambiguity in
english and korean, Journal of Cognitive Science, 19(3):291–329.
Lei LIU (2022), Phrasal weight effect on word order, Ph.D. thesis, State University
of New York at Stony Brook.
Philip RESNIK (1992), Left-corner parsing and psychological plausibility, in
COLING 1992 Volume 1: The 14th International Conference on Computational
Linguistics.
Stuart M SHIEBER (1985), Evidence against the context-freeness of natural
language, in Philosophy, Language, and Artificial Intelligence, pp. 79–89, Springer.
Edward STABLER (1997), Derivational minimalism, in Logical Aspects of
Computational Linguistics: First International Conference, LACL’96, Nancy, France,
September 23-25, 1996. Selected Papers, volume 1328, p. 68, Springer Science &
Business Media.
Edward P STABLER (2011), Computational perspectives on minimalism, Oxford
handbook of linguistic minimalism, pp. 617–643.
Miloš STANOJEVIĆ and Edward STABLER (2018), A sound and complete
left-corner parsing for minimalist grammars, in Proceedings of the Eight
Workshop on Cognitive Aspects of Computational Language Learning and Processing,
pp. 65–74.
Laurie A STOWE (1986), Parsing wh-constructions: Evidence for on-line gap
location, Language and cognitive processes, 1(3):227–245.

[32]

Psycholinguistic adequacy of LC parsing for MGs

Chong ZHANG (2017), Stacked relatives: Their structure, processing and
computation, Ph.D. thesis, State University of New York at Stony Brook.

[33]

Anonymous

A APPENDIX

A.1 Tree annotations for arc-standard LC MG parsing

Figure 4:
Tree annotations
for arc-standard
left-embeddings

TP

T’

t:: vP

DP

DP

the rat

pos’

’s cheese

v’

is here

10

13

1

2

2

3

2-3

4

4-7

8

4-6

7

5

6

6-7

7

8-12

13

8-10

13

9

10

10

10

11

12

12-13

13

TP

T’

t:: vP

DP

DP

DP

the rat

pos’

’s cheese

pos’

’s eyes

v’

are missing

14

17

1

2

2-3

3

2-3

4

4-6

7

4-7

8

5

6

6-7

7

8-10

11

8-11

12

9

10

10-11

11

12-16

17

12-14

17

13

14

14

14

15

16

16-17

17

[34]

Psycholinguistic adequacy of LC parsing for MGs

TP

T’

t:: vP

DP

the:: NP

NP

that:: TP

T’

t:: vP,-nom

DP, -nom

the:: cat::

v’

v:: VP

bit:: DP -rel

d-rel:: rat

v’

is here

20

23

1

2

2-8

17

2-17

18

3

4

4-5

5

4-5

6

6-17

17

6-16

17

7

8

8-14

17

8

8

9

10

10-11

11

10-11

12

12-16

17

12-14

17

13

14

14

14

15

16

18-22

23

18-20

23

19

20

20

20

21

22

22-23

23

TP

T’

t:: vP

DP

the NP

NP

that:: TP

T’

t:: vP

DP

the NP

NP

that TP

T’

t:: vP

DP

the cat

v’

v:: VP

bit DP

d-rel rat

v’

v VP

ate DP

d-rel cheese

v’

is here

34

37

1

2

2-8

31

2-31

32

3

4

4-5

5

4-5

6

6-31

31

6-30

31

7

8

8-28

31

8

8

9

10

10-16

25

10-25

26

11

12

12-13

14

12-13

13

14-25

25

14-24

25

15

16

16-22

25

16

16

17

18

18-19

19

18-19

20

20-24

25

20-22

25

21

22

22

22

23

24

26-30

31

26-28

31

27

28

28

28

29

30

32-36

37

32-34

37

33

34

34

34

35

36

36-37

37

Figure 5:
Tree annotations
for arc-standard
center-
embeddings

[35]

Anonymous

Figure 6:
Tree annotations
for arc-standard

right-
embeddings

TP

T’

t:: vP

DP

the:: NP

NP

that:: TP

T’

t:: vP

DP

d-rel:: rat

v’

v:: VP

ate:: cheeses

v’

is:: here19

20

20-21

21

16-18

21

16-20

21

13

14

14-15

15

12-14

15

11

12

7

8

8

8

1

2

2-15

16

2-8

15

8-10

15

10

10

9

10

3

4

4-5

6

4-5

5

6-12

15

6-10

15

17

18

18

18

18

21
TP

T’

t:: vP

DP

the:: NP

NP

that:: TP

T’

t:: vP

DP

d-rel rat

v’

v:: VP

ate:: DP

the:: NP

NP

that:: TP

T’

t:: vP

DP

d-rel:: cheese::

v’

v:: VP

had:: eyes::

v’

is here

32

35

1

2

2-8

29

2-29

30

3

4

4-5

5

4-5

6

6-10

29

6-12

29

7

8

8

8

8-10

29

9

10

10

10

11

12

12-14

29

13

14

14-16

29

15

16

16-22

29

17

18

18-19

19

18-19

20

20-26

29

20-24

29

21

22

22

22

22-24

29

23

24

24

24

25

26

26-28

29

27

28

28-29

29

30-34

35

30-32

35

31

32

32

32

33

34

34-35

35

[36]

Psycholinguistic adequacy of LC parsing for MGs

A.2Movement-based analysis for left-embeddings

TP

T’

t:: vP

DP

D’

’s NrelP

DP

the rat

Nrel’

Nrel cheese

v’

is here

12-14-15

15

1

2

2-3

3

2-3

4

4-6

6

4-6-8

8

6-8-9

10

6

6

5

6

7

8

8-9

9

10-12-14

14

10-12

12

11

12

12

12

13

14

14-15

15

TP

T’

t:: vP

DP

D’

’s NrelP

DP

D’

’s NrelP

DP

the rat

Nrel’

Nrel cheese

Nrel’

Nrel eyes

v’

are missing

1

2

2-3

3

2-3

4

4-6

6

4-6-8

8

6-8-9

10

6

6

5

6

7

8

8-9

9

10-12-14

14

10-12

12

11

12

12

12

12-14-15

16

13

14

14-15

15

16-18-20

20

16-18

18

17

18

18

18

18-20-21

21

19

20

20-21

21

Figure 7:
Tree annotations
for
movement-based
left-embeddings

[37]

Anonymous

A.3 Tree annotations for stacked relative clauses

Figure 8:
Tree annotations

for stacked
relative clauses
(promotion
analysis)

TP

T’

T vP

DP

the NP

NP

that TP

T’

T vP

DP

the cat

v’

v VP

lost DP

d-rel-2 NP

NP

that TP

T’

T vP

DP

the rat

v’

v VP

ate DP

d-rel-1 cheese

v’

is here1

2

2-22-28-30-31

32

2-22

22

3

4

4-10-16-18-19

20

4-10

10

5

6

6-7

7

6-7

8

8-18-19

19

8-18

18

9

10

10-16

16

10

10

11

12

12-13

13

12-13

14

14-16

16

14-16-18

18

15

16

16

16

17

18

20-30-31(lost)

31

20-30

30

21

22

22

22

22-28

28

23

24

24-25

26

24-25

25

26-30

30

26-28

28

27

28

28

28

27

28

29

30

32-34

34

32-34-36

36

33

34

34

34

34-36-37

37

35

36

36-37

37

[38]

Psycholinguistic adequacy of LC parsing for MGs

TP

T’

T vP

DP

the NP

cheese CP

CP

C’

that TP

T’

T vP

DP

the rat

v’

v VP

ate wh-rel

CP

C’

that TP

T’

T vP

DP

the cat

v’

v VP

lost wh-rel

v’

is here1

2

2-4-18-22-28-30-31

32

2-4

4

3

4

4-18

18

5

6

6-16-17

17

6-16

16

7

8

8

8

8-14-16-17

18

8-14

14

9

10

10-11

11

10-11

12

12-14-16

16

12-14

14

13

14

14

14

15

16

18-22

22

19

20

20-30-31

31

20-30

30

21

22

22-28

28

22

22

23

24

24-25

25

24-25

26

26-28-30

30

26-28

28

27

28

28

28

29

30

32-34-36

36

32-34

34

33

34

34

34

34-36-37

37

35

36

36-37

37

Figure 9:
Tree annotations
for stacked
relative clauses
(wh-movement
analysis)

[39]

Anonymous

This work is licensed under the Creative Commons Attribution 4.0 Public License.
 http://creativecommons.org/licenses/by/4.0/

[40]

http://creativecommons.org/licenses/by/4.0/

	Introduction
	Left-corner parsing for Minimalist Grammars
	Minimalist Grammar and its left-corner parser
	Tenure-based complexity metric

	Results
	Left-embedding
	Center-embedding
	Right-embedding
	Arc-strategies

	Discussion
	Left-embedding: an alternative structure
	Move-strategy
	Apparent difficulties with MaxTitem
	Other Tenure-based metrics in LC MG parsing

	Conclusion
	Appendix
	Tree annotations for arc-standard LC MG parsing
	Movement-based analysis for left-embeddings
	Tree annotations for stacked relative clauses

