Formalizing Feature Inheritance

Anonymous ACL submission

1 Introduction

Viewing context-free base rules as structure build-
ing operations (a rule S — NP VP builds an
S out of a NP and a V P), the transformational
cycle in syntax was a principle that governed the
interleaving of transformational operations with
context-free structure building operations. In par-
ticular, (cyclic) transformational rules were applied
only once certain categories (always S, often NP,
sometimes PP) of expressions were built. In early
minimalism, the transformational rule of move-
ment was interleaved with the structure building
operation of merge, however, movement could in
principle apply at any time, regardless of the cate-
gorial status of its input. Chomsky (2008) has sug-
gested a mechanism of feature inheritance, which
in effect delays transformations until a particular
category is reached. Thus, minimalism with fea-
ture inheritance seems to be a return to the original
conception of the syntactic cycle.

In this paper we provide a formalization of the
mechanism of feature inheritance in the context of
minimalist grammars (MGs), itself a formalization
of Chomsky’s (1995) Minimalist program. The
weak generative capacity and worst-case parsing
complexity of feature inheritance is then compared
to that of vanilla MGs.

2 Feature Inheritance

Assume the general clausal architecture of mini-
malism, where the complementizer head selects
the tense head which in turn selects the little-v
head which selects the big-V head. A large body
of work assumes a shared property between little-v
and C; these two heads are said to define locality
domains in the syntax (called phases). A basic
goal expressed by Chomsky (2008) to reduce the
stipulations needed in the theory. As little-v and C
share one non-trivial property already, determining
whether more of their properties can be identified

would potentially reduce the number of indepen-
dent stipulations needed to describe the lexicon.
Feature Inheritance (FI) is introduced in (Chomsky,
2008) as a way of reconciling a number of related
observations with theoretical assumptions, and is
made use of by little-v and C, which increases their
similarity a great deal.

A main theoretical motivation for FI is to give
a larger role to phases. Phases are said to coin-
cide with the portion of the syntactic structure that
the interfaces can refer to. In other words, they
are the units that semantic and phonological inter-
pretation are defined over. Chomsky suggests that
both interfaces refer to the same units of syntactic
structure. In addition, he suggests that syntactic
operations (like movement and agreement) are not
distributed throughout phases, but are rather de-
ferred until the last head in the phase (little-v or C).
This desideratum is problematic from the perspec-
tive of orthodox analytical assumptions, as the T
head is generally considered to trigger movement
of and agreement with the surface subject.

One relevant observation is that only finite T
heads trigger movement and agreement. A sec-
ond observation is that the distribution of finite vs
nonfinite T is related to the choice of C: for exam-
ple, the declarative complementizer that selects
for finite T, whereas for selects for non-finite T.
Chomsky’s resolution to the problem is to shift
the finite-nonfinite distinction over to C, making
T into an underspecified tense head. Then it is C
which selects for a generic T head, and it must be
C which is responsible for triggering movement
and agreement on T. FI is the mechanism by which
movement triggered by a higher head targets the
projection of a lower head, which allows for the
idea that movement and agreement is deferred until
phase heads are introduced to be realized.

C (and little-v) also permit generic movement
to their edges, for example, to break long distance
movement into phase-sized chunks. Thus C can

trigger movement multiple times, both to its edge,
as well as to the edge of the head immediately
below it. However, the movements that C now
triggers are typically thought to be of two funda-
mentally different kinds: the movement to T is A-
movement, and that targeting C is A-bar-movement.
These kinds of movements have importantly differ-
ent properties (pronouns can be bound after moving
over them with A-movement, but not with A-bar-
movement, for example), and Chomsky (1995) has
proposed that movement steps between the high-
est A-bar position and the lowest base-merge po-
sition of expressions be invisible to various well-
formedness conditions. Making the A and A-bar
movements which C triggers happen simultane-
ously (as opposed to serially) structures the move-
ment dependencies entered into by DPs as trees (or-
dered by derivational order), rather than sequences.
This then eliminates the need to postulate an in-
dependent operation which deletes intermediate
elements in a sequence of movement dependencies
— these are no longer on a single branch of the tree.
Feature Inheritance thus paves the way for
1. phase heads to be the locus of movement and
agreement triggers, and 2. a novel approach to the
distinction between A and A-bar movements.

3 Formal background

We couch our formalization of feature inheritance
in the formal framework of minimalist grammars
(Stabler, 1997, 2011), an extensible and well-
understood grammar formalism capable of transpar-
ently representing minimalist analyses. Minimalist
grammars are a lexicalized grammar formalism,
like categorial grammars, with universal grammat-
ical rules and complex lexical entries. The cate-
gories of lexical entries take the form of lists of fea-
tures, written o or 3, called feature bundles, where
a list is a data structure where only the first element
is directly accessible. Removing (’checking’) the
first element of a nonempty list « results in the re-
mainder of the list o (so o = a.c). Features have
one of two polarities (positive and negative), and
come in different kinds, represented as different
names (k, wh, q, d, ...). Two features +X and -y
of opposite polarity match iff they are of the same
kind (i.e. x = y).

A syntactic expression is either a pair (w, a)
consisting of a string of phonemes w and a feature
bundle « (written W: «v), or a term e(¢1, t2), where
t1 and to are syntactic expressions, and e is either <

\ >

+ = \

e /

= 5)
s i

Figure 1: Merge of a specifier

or >. The head of a syntactic expression { is ¢ itself,
if a pair, and the head of t;7 if t = (¢, t2), where
tgy=tiife=<andtg =tyif @ = >.

Given a syntactic expression ¢, the result of
checking the first feature of its head is written ¢’.
When ¢ is a term, it represents a tree, and the in-
ternal nodes ’point’ in the direction of the head. A
trace is a pair of the empty string and the empty
feature bundle, written t.

There are two syntactic operations, Merge and
Move. Merge is binary, and Move unary. They are
both restricted in their application by the feature
bundles present in their arguments. The head of the
first argument of both operations must be a positive
feature. Merge applies to two expressions ¢ and s
just in case the heads of both have matching first
features. Move applies to its single argument just
in case this argument contains a unique leaf whose
first feature matches the first feature of the head.

The output of Merge depends on whether its first
argument is a leaf or a complex term. If a leaf /,
then Merge(l, s) = <(¢, s’), and if a proper term
t, Merge(t, s) = >(t', s'), as is depicted in figure
1.

Move replaces a subterm of the input with a
trace, and so we need a notation which simplifies re-
ferring to subterms. We define maximal projection
contexts C[x] to be either a variable z, or a structure
of one of the two forms: >(Clz],t) or <(¢, C[z]).
A maximal projection context C|[x] is a term where
x occurs without any arrows pointing to it, and re-
placing the variable = with a term s is written C/s].
Move applies to ¢ iff ¢ = C|[s], where s is a term
whose head begins with a negative feature which
matches that of t. Move(C|[s]) = >(s', C[t]), as
is depicted in figure 2.

Both operations have the effect of removing fea-
tures from feature bundles one at a time, and fea-
tures in feature bundles are checked one at a time
from left to right.

vy

-y.0

Figure 2: Movement leaves a trace

4 Implementing Feature Inheritance

Feature inheritance diverges from minimalist gram-
mars as they have been defined above in two ways.
First, two features can be checked at the same time.
Second, movement can target not the top of an ex-
pression, but rather some node embedded inside
it. To deal with the first difference, we allow fea-
ture bundles to contain not just individual features,
but also pairs of features. Given a pair of features
(+X, +y), it is intended that they be checked during
the same derivational step. To deal with the sec-
ond difference, we allow positive features to take a
diacritic (written: +x*) indicating that they should
target the sister node to the head. We can augment
the Move operation so that it can deal with these
new feature types. For example, given a term ¢ the
first feature of the head of which begins with +x*,
whose complement C/[s] contains a unique term
s with matching first feature, write ¢ = D[C|[s]].
Then Move(D[C|[s]]) = D[>(s', C]t])]'.

These operations allow us to write lexical items
with the desired behaviour; Chomsky’s C head
would have feature bundle +T.(+k*, +wh).-C, indi-
cating that it merges with a TP, then simultaneously
triggers Kemovement t0' TP and Wh=movement to
itself, and then is itself a CP. However, we are also
able to combine pairs and downward diacritics in
undesired ways. For example, we could just as eas-
ily write the intended (+k, +wh*) as (+k, +wh') or
(+k*, +wh') or as (+k, +wh). The intent of Chom-
sky’s proposal seems best captured by the follow-
ing well-formedness constraint on lexical feature
bundles. A lexical feature bundle containing a fea-
ture pair (f, g) is well-formed if all of the following
obtain:

1. There is gXactly'one feature pait in the bundle

2. The feature pair is in the second position in
the bundle, immediately following a positive

feature

3. The first feature in the pair has a downward
diacritic

4. No other feature in the bundle has a downward
diacritic
These constraints are motivated by the following
intuitions about Chomsky’s proposal.

1. Feature inheritance happens just’once

2. Feature inheritance happens as soon as the
complement is merged

3. Feature inheritance involves transfering fea-
tures to the head of the complement

4. The only way to transfer features to the head
of the complement is via feature inheritance

Taken together, these constraints on feature bun-
dles allow for an alternative implementation of
feature inheritance. As feature inheritance targets
the first merged argument of the head, and takes
place immediately after this argument is merged,
it is simple to deal with feature inheritance dur-
ing this Merge step, where the top of the second
argument is still accessible. Let ¢ be a lexical
item whose feature bundle begins with the follow-
ing two features: +x and (+y*, +z. There are two
cases to consider, depending on whether one mover
matches both features in the pair, or whether they
are matched by different movers. For the first case,
let C'[s] be a term with first feature -X, and where
the first two features of s are -y and -z. Then
Merge (¢, C[s]) = >(s”,<(¢",>(t,C[t]"))). In the
other case, let C'[z, y| be a maximal projection con-
text with two variables, and let C|r, s] be a term
whose first feature is -X, and where the first fea-
tures of r and s are -y and -z respectively. Then
Merge (¢, C[r, s]) = >(s',<(¢",>(r', C[t, t]"))).

It only matters that the movement steps be si-
multaneous if the same mover is targeted in both
cases. We thus require that if a single mover can
satisfy both features, it must. This is to avoid a
situation where two different movers are targeted
simultaneously, and then the first one is targeted
by a different positive feature, circumventing the
intent of simultaneity.

5 Complexity Analysis

Michaelis (2001) proves the equivalence between
minimalist grammars and multiple context-free

Lei
Highlight

Lei
Highlight

Lei
Highlight

Lei
Highlight

Lei
Highlight

grammars, providing a scaffolding for future
demonstrations that extensions do not increase gen-
erative capacity. To establish such an equivalence,
we need to present the modified operations in in-
ference rule format, stated'over finite'sequences of
strings paired with feature bundles. Our revised
implemention of feature inheritance only modifies
the Merge rule (by adding to it two new cases), and
so we present just these in inference rule format
(see Stabler and Keenan (2003) for the others). In
inference rule notation, to each term corresponds a
sequence of string-feature bundle pairs. Each pair
beyond the first corresponds to a maximal proper
subterm whose head begins with negative features.
The first pair corresponds to the term minus these
moving pieces.

The inference rule MrgFIla describes the sit-
uation where there is a single mover, for whom
this is the last movement step, and therefore is pro-
nounced in its highest position.

The inference rule MrgFI1b describes the situa-
tion where the single mover has features left over,
and thus continues moving.

The inference rule MrgFI2a describes the situa-
tion where there are two movers, for both of which
this is the last movement step, and therefore are
pronounced in their highest positions. In the result,
we see that the phonetic part o of the tucking-in
mover is sandwiched between the head m select-
ing the complement, and the pronunciation n of
this complement. The inference rule MrgFI2b de-
scribes the situation where there are two movers,
but there is continuing movement. Pursuant to the
discussion above, we only allow targeting two in-
dependent movers if the first one does not have
multiple features, and thus the only possible contin-
uing mover is the second. As noted by Stanojevic¢
(2019), parsers derived from the above inference
rule notation can have their worst-case time com-
plexity [EEGISHSSINNEHE of the rules themselves.
Representing each string as a span, a pair of integer
variables indicating what portion of the input string
that string should cover, the number of distinct
variables in the antecedents of a rule polynomially
bounds its contribution to worst case complexity.
This summation and the associated computational
complexity is indicated next to the names of each
of the rules above. We see that the rule MrgFI1b
contributes the most to the worst case time com-
plexity of the new rules. To put this in perspective,
the worst case time complexity of minimalist gram-
mars without feature inheritance is also O(n?*+3)

(Fowlie and Koller, 2017; Stanojevié, 2019). Thus
minimalist grammars with feature inheritance have

the same worst case time complexity as vanilla
MGs.

6 Conclusion

We have presented a formalization of Chomsky’s
((2008)) mechanism of feature inheritance, which
has played an important role in minimalist syntactic
theory over the intervening nearly two decades.
It is formally innocuous: it increases neither the
weak generative capacity nor the worst case time
complexity of the MG formalism.

References

Noam Chomsky. 1995. The Minimalist Program. MIT
Press, Cambridge, Massachusetts.

Noam Chomsky. 2008. On phases. In Robert Freidin,
Carlos P. Otero, and Maria Luisa Zubizarreta, editors,
Foundational Issues in Linguistic Theory, pages 133—
166. MIT Press, Cambridge, Massachusetts.

Meaghan Fowlie and Alexander Koller. 2017. Parsing
minimalist languages with interpreted regular tree
grammars. In Proceedings of the 13th International
Workshop on Tree Adjoining Grammars and Related
Formalisms, pages 11-20, Umea, Sweden. Associa-
tion for Computational Linguistics.

Jens Michaelis. 2001. On Formal Properties of Mini-
malist Grammars. Ph.D. thesis, Universitiat Potsdam.

Edward P. Stabler. 1997. Derivational minimalism. In
Christian Retoré, editor, Logical Aspects of Compu-
tational Linguistics, volume 1328 of Lecture Notes
in Computer Science, pages 68-95. Springer-Verlag,
Berlin.

Edward P. Stabler. 2011. Computational perspectives
on minimalism. In Cedric Boeckx, editor, The Ox-
ford Handbook of Linguistic Minimalism, Oxford
Handbooks in Linguistics, chapter 27, pages 616—
641. Oxford University Press, New York.

Edward P. Stabler and Edward L. Keenan. 2003. Struc-
tural similarity within and among languages. Theo-
retical Computer Science, 293:345-363.

Milo§ Stanojevi¢. 2019. On the computational com-
plexity of head movement and affix hopping. In For-
mal Grammar, pages 101-116, Berlin, Heidelberg.
Springer Berlin Heidelberg.

https://aclanthology.org/W17-6202/
https://aclanthology.org/W17-6202/
https://aclanthology.org/W17-6202/
https://aclanthology.org/W17-6202/
https://aclanthology.org/W17-6202/
Lei
Highlight

Lei
Highlight

Lei
Highlight

(m, +X.(+y*, +2).a) (n,-X), &, (0, -y.~zZ), %

—

<Omn7 a>’) /IJZ_)’

MrgFlla O(n?+2)

-

<07 _Y'_Z'B>7 w

X>7

(0,8), 9

MrgFIlb O(n?+3)

-

(m, +X.(+y¥, +2).a) (n, -
(mn, @), ¢,

MrgFI2a O(n?+1)

- —

(m, +x.(+y*,+2).0) (n,=x), ¢, (0,-y), ¥, {p,-2.8), X

MrgFI2b O(n2k+2)

-

(mon, a), é,, (p, B), X

	Introduction
	Feature Inheritance
	Formal background
	Implementing Feature Inheritance
	Complexity Analysis
	Conclusion

