
Formalizing Feature Inheritance

Anonymous ACL submission

1 Introduction001

Viewing context-free base rules as structure build-002

ing operations (a rule S → NP V P builds an003

S out of a NP and a V P ), the transformational004

cycle in syntax was a principle that governed the005

interleaving of transformational operations with006

context-free structure building operations. In par-007

ticular, (cyclic) transformational rules were applied008

only once certain categories (always S, often NP,009

sometimes PP) of expressions were built. In early010

minimalism, the transformational rule of move-011

ment was interleaved with the structure building012

operation of merge, however, movement could in013

principle apply at any time, regardless of the cate-014

gorial status of its input. Chomsky (2008) has sug-015

gested a mechanism of feature inheritance, which016

in effect delays transformations until a particular017

category is reached. Thus, minimalism with fea-018

ture inheritance seems to be a return to the original019

conception of the syntactic cycle.020

In this paper we provide a formalization of the021

mechanism of feature inheritance in the context of022

minimalist grammars (MGs), itself a formalization023

of Chomsky’s (1995) Minimalist program. The024

weak generative capacity and worst-case parsing025

complexity of feature inheritance is then compared026

to that of vanilla MGs.027

2 Feature Inheritance028

Assume the general clausal architecture of mini-029

malism, where the complementizer head selects030

the tense head which in turn selects the little-v031

head which selects the big-V head. A large body032

of work assumes a shared property between little-v033

and C; these two heads are said to define locality034

domains in the syntax (called phases). A basic035

goal expressed by Chomsky (2008) to reduce the036

stipulations needed in the theory. As little-v and C037

share one non-trivial property already, determining038

whether more of their properties can be identified039

would potentially reduce the number of indepen- 040

dent stipulations needed to describe the lexicon. 041

Feature Inheritance (FI) is introduced in (Chomsky, 042

2008) as a way of reconciling a number of related 043

observations with theoretical assumptions, and is 044

made use of by little-v and C, which increases their 045

similarity a great deal. 046

A main theoretical motivation for FI is to give 047

a larger role to phases. Phases are said to coin- 048

cide with the portion of the syntactic structure that 049

the interfaces can refer to. In other words, they 050

are the units that semantic and phonological inter- 051

pretation are defined over. Chomsky suggests that 052

both interfaces refer to the same units of syntactic 053

structure. In addition, he suggests that syntactic 054

operations (like movement and agreement) are not 055

distributed throughout phases, but are rather de- 056

ferred until the last head in the phase (little-v or C). 057

This desideratum is problematic from the perspec- 058

tive of orthodox analytical assumptions, as the T 059

head is generally considered to trigger movement 060

of and agreement with the surface subject. 061

One relevant observation is that only finite T 062

heads trigger movement and agreement. A sec- 063

ond observation is that the distribution of finite vs 064

nonfinite T is related to the choice of C: for exam- 065

ple, the declarative complementizer that selects 066

for finite T, whereas for selects for non-finite T. 067

Chomsky’s resolution to the problem is to shift 068

the finite-nonfinite distinction over to C, making 069

T into an underspecified tense head. Then it is C 070

which selects for a generic T head, and it must be 071

C which is responsible for triggering movement 072

and agreement on T. FI is the mechanism by which 073

movement triggered by a higher head targets the 074

projection of a lower head, which allows for the 075

idea that movement and agreement is deferred until 076

phase heads are introduced to be realized. 077

C (and little-v) also permit generic movement 078

to their edges, for example, to break long distance 079

movement into phase-sized chunks. Thus C can 080

1



trigger movement multiple times, both to its edge,081

as well as to the edge of the head immediately082

below it. However, the movements that C now083

triggers are typically thought to be of two funda-084

mentally different kinds: the movement to T is A-085

movement, and that targeting C is A-bar-movement.086

These kinds of movements have importantly differ-087

ent properties (pronouns can be bound after moving088

over them with A-movement, but not with A-bar-089

movement, for example), and Chomsky (1995) has090

proposed that movement steps between the high-091

est A-bar position and the lowest base-merge po-092

sition of expressions be invisible to various well-093

formedness conditions. Making the A and A-bar094

movements which C triggers happen simultane-095

ously (as opposed to serially) structures the move-096

ment dependencies entered into by DPs as trees (or-097

dered by derivational order), rather than sequences.098

This then eliminates the need to postulate an in-099

dependent operation which deletes intermediate100

elements in a sequence of movement dependencies101

– these are no longer on a single branch of the tree.102

Feature Inheritance thus paves the way for103

1. phase heads to be the locus of movement and104

agreement triggers, and 2. a novel approach to the105

distinction between A and A-bar movements.106

3 Formal background107

We couch our formalization of feature inheritance108

in the formal framework of minimalist grammars109

(Stabler, 1997, 2011), an extensible and well-110

understood grammar formalism capable of transpar-111

ently representing minimalist analyses. Minimalist112

grammars are a lexicalized grammar formalism,113

like categorial grammars, with universal grammat-114

ical rules and complex lexical entries. The cate-115

gories of lexical entries take the form of lists of fea-116

tures, written α or β, called feature bundles, where117

a list is a data structure where only the first element118

is directly accessible. Removing (’checking’) the119

first element of a nonempty list α results in the re-120

mainder of the list α′ (so α = a.α′). Features have121

one of two polarities (positive and negative), and122

come in different kinds, represented as different123

names (k, wh, q, d, . . .). Two features +x and -y124

of opposite polarity match iff they are of the same125

kind (i.e. x = y).126

A syntactic expression is either a pair ⟨w,α⟩127

consisting of a string of phonemes w and a feature128

bundle α (written w:α), or a term •(t1, t2), where129

t1 and t2 are syntactic expressions, and • is either <130

x=.γ x.δ

δ γ

+ ⇒

>

Figure 1: Merge of a specifier

or >. The head of a syntactic expression t is t itself, 131

if a pair, and the head of tH if t = •(t1, t2), where 132

tH = t1 if • = <, and tH = t2 if • = >. 133

Given a syntactic expression t, the result of 134

checking the first feature of its head is written t′. 135

When t is a term, it represents a tree, and the in- 136

ternal nodes ’point’ in the direction of the head. A 137

trace is a pair of the empty string and the empty 138

feature bundle, written t. 139

There are two syntactic operations, Merge and 140

Move. Merge is binary, and Move unary. They are 141

both restricted in their application by the feature 142

bundles present in their arguments. The head of the 143

first argument of both operations must be a positive 144

feature. Merge applies to two expressions t and s 145

just in case the heads of both have matching first 146

features. Move applies to its single argument just 147

in case this argument contains a unique leaf whose 148

first feature matches the first feature of the head. 149

The output of Merge depends on whether its first 150

argument is a leaf or a complex term. If a leaf ℓ, 151

then Merge(l, s) = <(ℓ′, s′), and if a proper term 152

t, Merge(t, s) = >(t′, s′), as is depicted in figure 153

1. 154

Move replaces a subterm of the input with a 155

trace, and so we need a notation which simplifies re- 156

ferring to subterms. We define maximal projection 157

contextsC[x] to be either a variable x, or a structure 158

of one of the two forms: >(C[x], t) or <(t, C[x]). 159

A maximal projection context C[x] is a term where 160

x occurs without any arrows pointing to it, and re- 161

placing the variable x with a term s is written C[s]. 162

Move applies to t iff t = C[s], where s is a term 163

whose head begins with a negative feature which 164

matches that of t. Move(C[s]) = >(s′, C[t]′), as 165

is depicted in figure 2. 166

Both operations have the effect of removing fea- 167

tures from feature bundles one at a time, and fea- 168

tures in feature bundles are checked one at a time 169

from left to right. 170

2



y+.γ

-y.δ

γδ t

⇒

>

Figure 2: Movement leaves a trace

4 Implementing Feature Inheritance171

Feature inheritance diverges from minimalist gram-172

mars as they have been defined above in two ways.173

First, two features can be checked at the same time.174

Second, movement can target not the top of an ex-175

pression, but rather some node embedded inside176

it. To deal with the first difference, we allow fea-177

ture bundles to contain not just individual features,178

but also pairs of features. Given a pair of features179

⟨+x, +y⟩, it is intended that they be checked during180

the same derivational step. To deal with the sec-181

ond difference, we allow positive features to take a182

diacritic (written: +x↓) indicating that they should183

target the sister node to the head. We can augment184

the Move operation so that it can deal with these185

new feature types. For example, given a term t the186

first feature of the head of which begins with +x↓,187

whose complement C[s] contains a unique term188

s with matching first feature, write t = D[C[s]].189

Then Move(D[C[s]]) = D[>(s′, C[t])]′.190

These operations allow us to write lexical items191

with the desired behaviour; Chomsky’s C head192

would have feature bundle +T.⟨+k↓, +wh⟩.-C, indi-193

cating that it merges with a TP, then simultaneously194

triggers k-movement to TP and wh-movement to195

itself, and then is itself a CP. However, we are also196

able to combine pairs and downward diacritics in197

undesired ways. For example, we could just as eas-198

ily write the intended ⟨+k, +wh↓⟩ as ⟨+k, +wh↓⟩ or199

⟨+k↓, +wh↓⟩ or as ⟨+k, +wh⟩. The intent of Chom-200

sky’s proposal seems best captured by the follow-201

ing well-formedness constraint on lexical feature202

bundles. A lexical feature bundle containing a fea-203

ture pair ⟨f, g⟩ is well-formed if all of the following204

obtain:205

1. There is exactly one feature pair in the bundle206

2. The feature pair is in the second position in207

the bundle, immediately following a positive208

feature 209

3. The first feature in the pair has a downward 210

diacritic 211

4. No other feature in the bundle has a downward 212

diacritic 213

These constraints are motivated by the following 214

intuitions about Chomsky’s proposal. 215

1. Feature inheritance happens just once 216

2. Feature inheritance happens as soon as the 217

complement is merged 218

3. Feature inheritance involves transfering fea- 219

tures to the head of the complement 220

4. The only way to transfer features to the head 221

of the complement is via feature inheritance 222

Taken together, these constraints on feature bun- 223

dles allow for an alternative implementation of 224

feature inheritance. As feature inheritance targets 225

the first merged argument of the head, and takes 226

place immediately after this argument is merged, 227

it is simple to deal with feature inheritance dur- 228

ing this Merge step, where the top of the second 229

argument is still accessible. Let ℓ be a lexical 230

item whose feature bundle begins with the follow- 231

ing two features: +x and ⟨+y↓, +z. There are two 232

cases to consider, depending on whether one mover 233

matches both features in the pair, or whether they 234

are matched by different movers. For the first case, 235

let C[s] be a term with first feature -x, and where 236

the first two features of s are -y and -z. Then 237

Merge(ℓ, C[s]) = >(s′′, <(ℓ′′, >(t, C[t]′))). In the 238

other case, let C[x, y] be a maximal projection con- 239

text with two variables, and let C[r, s] be a term 240

whose first feature is -x, and where the first fea- 241

tures of r and s are -y and -z respectively. Then 242

Merge(ℓ, C[r, s]) = >(s′, <(ℓ′′, >(r′, C[t, t]′))). 243

It only matters that the movement steps be si- 244

multaneous if the same mover is targeted in both 245

cases. We thus require that if a single mover can 246

satisfy both features, it must. This is to avoid a 247

situation where two different movers are targeted 248

simultaneously, and then the first one is targeted 249

by a different positive feature, circumventing the 250

intent of simultaneity. 251

5 Complexity Analysis 252

Michaelis (2001) proves the equivalence between 253

minimalist grammars and multiple context-free 254

3

Lei
Highlight

Lei
Highlight

Lei
Highlight

Lei
Highlight

Lei
Highlight



grammars, providing a scaffolding for future255

demonstrations that extensions do not increase gen-256

erative capacity. To establish such an equivalence,257

we need to present the modified operations in in-258

ference rule format, stated over finite sequences of259

strings paired with feature bundles. Our revised260

implemention of feature inheritance only modifies261

the Merge rule (by adding to it two new cases), and262

so we present just these in inference rule format263

(see Stabler and Keenan (2003) for the others). In264

inference rule notation, to each term corresponds a265

sequence of string-feature bundle pairs. Each pair266

beyond the first corresponds to a maximal proper267

subterm whose head begins with negative features.268

The first pair corresponds to the term minus these269

moving pieces.270

The inference rule MrgFI1a describes the sit-271

uation where there is a single mover, for whom272

this is the last movement step, and therefore is pro-273

nounced in its highest position.274

The inference rule MrgFI1b describes the situa-275

tion where the single mover has features left over,276

and thus continues moving.277

The inference rule MrgFI2a describes the situa-278

tion where there are two movers, for both of which279

this is the last movement step, and therefore are280

pronounced in their highest positions. In the result,281

we see that the phonetic part o of the tucking-in282

mover is sandwiched between the head m select-283

ing the complement, and the pronunciation n of284

this complement. The inference rule MrgFI2b de-285

scribes the situation where there are two movers,286

but there is continuing movement. Pursuant to the287

discussion above, we only allow targeting two in-288

dependent movers if the first one does not have289

multiple features, and thus the only possible contin-290

uing mover is the second. As noted by Stanojević291

(2019), parsers derived from the above inference292

rule notation can have their worst-case time com-293

plexity read directly off of the rules themselves.294

Representing each string as a span, a pair of integer295

variables indicating what portion of the input string296

that string should cover, the number of distinct297

variables in the antecedents of a rule polynomially298

bounds its contribution to worst case complexity.299

This summation and the associated computational300

complexity is indicated next to the names of each301

of the rules above. We see that the rule MrgFI1b302

contributes the most to the worst case time com-303

plexity of the new rules. To put this in perspective,304

the worst case time complexity of minimalist gram-305

mars without feature inheritance is also O(n2k+3)306

(Fowlie and Koller, 2017; Stanojević, 2019). Thus 307

minimalist grammars with feature inheritance have 308

the same worst case time complexity as vanilla 309

MGs. 310

6 Conclusion 311

We have presented a formalization of Chomsky’s 312

((2008)) mechanism of feature inheritance, which 313

has played an important role in minimalist syntactic 314

theory over the intervening nearly two decades. 315

It is formally innocuous: it increases neither the 316

weak generative capacity nor the worst case time 317

complexity of the MG formalism. 318

References 319

Noam Chomsky. 1995. The Minimalist Program. MIT 320
Press, Cambridge, Massachusetts. 321

Noam Chomsky. 2008. On phases. In Robert Freidin, 322
Carlos P. Otero, and Maria Luisa Zubizarreta, editors, 323
Foundational Issues in Linguistic Theory, pages 133– 324
166. MIT Press, Cambridge, Massachusetts. 325

Meaghan Fowlie and Alexander Koller. 2017. Parsing 326
minimalist languages with interpreted regular tree 327
grammars. In Proceedings of the 13th International 328
Workshop on Tree Adjoining Grammars and Related 329
Formalisms, pages 11–20, Umeå, Sweden. Associa- 330
tion for Computational Linguistics. 331

Jens Michaelis. 2001. On Formal Properties of Mini- 332
malist Grammars. Ph.D. thesis, Universität Potsdam. 333

Edward P. Stabler. 1997. Derivational minimalism. In 334
Christian Retoré, editor, Logical Aspects of Compu- 335
tational Linguistics, volume 1328 of Lecture Notes 336
in Computer Science, pages 68–95. Springer-Verlag, 337
Berlin. 338

Edward P. Stabler. 2011. Computational perspectives 339
on minimalism. In Cedric Boeckx, editor, The Ox- 340
ford Handbook of Linguistic Minimalism, Oxford 341
Handbooks in Linguistics, chapter 27, pages 616– 342
641. Oxford University Press, New York. 343

Edward P. Stabler and Edward L. Keenan. 2003. Struc- 344
tural similarity within and among languages. Theo- 345
retical Computer Science, 293:345–363. 346

Miloš Stanojević. 2019. On the computational com- 347
plexity of head movement and affix hopping. In For- 348
mal Grammar, pages 101–116, Berlin, Heidelberg. 349
Springer Berlin Heidelberg. 350

4

https://aclanthology.org/W17-6202/
https://aclanthology.org/W17-6202/
https://aclanthology.org/W17-6202/
https://aclanthology.org/W17-6202/
https://aclanthology.org/W17-6202/
Lei
Highlight

Lei
Highlight

Lei
Highlight



⟨m, +x.(+y↓, +z).α⟩ ⟨n, -x⟩, ϕ⃗, ⟨o, -y.-z⟩, ψ⃗
MrgFI1a O(n2k+2)

⟨omn, α⟩, ϕ⃗, ψ⃗

⟨m, +x.(+y↓, +z).α⟩ ⟨n, -x⟩, ϕ⃗, ⟨o, -y.-z.β⟩, ψ⃗
MrgFI1b O(n2k+3)

⟨mn,α⟩, ϕ⃗, ⟨o, β⟩, ψ⃗

⟨m, +x.(+y↓, +z).α⟩ ⟨n, -x⟩, ϕ⃗, ⟨o, -y⟩, ψ⃗, ⟨p, -z⟩, χ⃗
MrgFI2a O(n2k+1)

⟨pmon, α⟩, ϕ⃗, ψ⃗, χ⃗

⟨m, +x.(+y↓, +z).α⟩ ⟨n, -x⟩, ϕ⃗, ⟨o, -y⟩, ψ⃗, ⟨p, -z.β⟩, χ⃗
MrgFI2b O(n2k+2)

⟨mon, α⟩, ϕ⃗, ψ⃗, ⟨p, β⟩, χ⃗

5


	Introduction
	Feature Inheritance
	Formal background
	Implementing Feature Inheritance
	Complexity Analysis
	Conclusion



